Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When every photon counts

20.04.2009
Unusual cell nuclei help nocturnal animals see better

The eyes of nocturnal mammals have very large numbers of highly-sensitive rod photoreceptors (the cell type responsible for night vision). They have to perceive light which is less than a millionth of the intensity of daylight.

An international team headed by LMU researchers Dr. Boris Joffe, Dr. Irina Solovei and Professor Thomas Cremer has now succeeded in demonstrating that a nocturnal lifestyle and the challenges posed by it have a dramatic effect on the organisation of the nuclei of rod cells.

The scientists observed a unique distribution of densely packed inactive and less densely packed active regions of DNA in the rods of nocturnal mammals. This organization differs from the nuclear architecture in all cells of almost all other eukaryotic organisms – including rod cells of diurnal mammals. “There is an explanation for this difference,” notes Joffe.

“With this inverted arrangement, the cell nuclei of nocturnal mammals function as collecting lenses which strongly reduce scatter of the incident light. Computer simulations show that stacks of many such cell nuclei channel the light very effectively into the light-sensitive outer segment of the rods. The modified organization of the rod cell nuclei thus enhances these animals’ nocturnal vision – and offers new insights into the evolution of the mammalian retina and for our understanding of the spatial organisation of the nucleus.”

The art of nuclear packing: The DNA molecule in diploid mammals is two metres long, but has to fit into a cell nucleus just a few micrometres in size. The DNA molecule is tightly packed and covered by proteins. Some regions of this so-called chromatin contain genes, that is information about proteins, and are known as euchromatin. They are typically found in the interior of the nucleus. The major part of the heterochromatin, formed by non-coding DNA, is located at the periphery of the nucleus. This organization of the nucleus has been retained over the course of the last 500 million years in multicellular organisms almost without exception.

“This arrangement is so universal that it can be described as the ‘conventional architecture’ of the nucleus,” explains Dr. Boris Joffe of the BioCenter at LMU Munich. “The discovery that there are substantial differences in the nuclear architecture and that this depends on the lifestyle of the animal is then all the more surprising.” An interdisciplinary team of researchers from LMU, the Max Planck Institute for Brain Research in Frankfurt and the Cavendish Laboratory in Cambridge was able to demonstrate that the arrangement of chromatin in the rod cells of nocturnal mammals is inverted compared to the conventional one. The tightly packed heterochromatin is located in the interior of the nucleus, whilst the more loosely packed euchromatin containing the active areas of DNA is located at the periphery.

The explanation for this unusual nuclear architecture is to be found in the biology of vision. In humans and all other vertebrates, light must pass the retina before reaching the light-sensitive outer segment of the photoreceptors. This presents nocturnal animals with a dilemma. They need a very large number of rods to detect low light levels, which results in a thicker retina and consequently greater light loss through scattering before the light can reach the outer segment of the photoreceptors. To solve problem, evolution has exploited an unusual physical characteristic of the tightly packed heterochromatin.

As a result of its increased packing density, heterochromatin refracts light more strongly than euchromatin but it does not reduce scatter of light if it is located in the periphery of the nucleus. If, however, it is concentrated in the center, the whole nucleus functions as a tiny converging lens. A number of these micro-lenses are stacked on top of each other, because the rod cell nuclei are arranged in columns. Computer simulations clearly demonstrate the benefit of this unique cellular arrangement: Light is channelled through the retina with almost no loss from scattering and focused onto the light-sensitive outer segments of the photoreceptors.

This specific architecture of the rod cell nuclei must have arisen more than one hundred million years ago and thus provides new insights into early mammalian evolution. At this time, the ancestors of today’s mammals adapted to a nocturnal lifestyle in order to escape carniovorous reptiles, the dominant predators of that period. All nocturnal mammals, including recent species, retained the inverted rod cell nuclear architecture. However, mammals which became diurnal – such as man – reacquired a conventional organization of the chromatin in their rod cells.

“This emphasizes the functional advantage of the conventional architecture,” notes Joffe. “The inversion of nuclear organisation obviously entails some unknown disadvantages. One possible explanation could be that the conventional architecture makes it easier to share nuclear machinery between the active areas of the chromatin. But the advantages of enhanced night vision outweigh this benefit in nocturnal mammals.” (suwe)

Publication:
„Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution“,
Irina Solovei, Moritz Kreysing, Christian Lanctot, Süleyman Kösem, Leo Peichl, Thomas Cremer, Jochen Guck, Boris Joffe,

Cell, 17th April 2009

Contact:
Dr. Boris Joffe
BioCenter of LMU Munich
Tel.: ++49 (0) 89 / 2180 – 74332
Fax: ++49 (0) 89 / 2180 – 74331
E-mail: boris.joffe@lrz.uni-muenchen.de
Professor Dr Thomas Cremer
BioCenter of LMU Munich
Tel.: ++49 (0) 89 / 2180 – 74329
Fax: ++49 (0) 89 / 2180 – 74331
E-mail: thomas.cremer@lrz.uni-muenchen.de

Luise Dirscherl | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>