Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photoexcited graphene puzzle solved

01.06.2018

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for light detectors can offer significant improvements with respect to materials being used nowadays.


Schematic representation of the ultrafast optical pump – terahertz probe experiment, where the optical pump induces electron heating and the terahertz pulse is sensitive to the conductivity of graphene directly after this heating process

Ill./©: Fabien Vialla

For example, graphene can detect light of almost any color, and it gives an extremely fast electronic response within one millionth of a millionth of a second. Thus, in order to properly design graphene-based light detectors it is crucial to understand the processes that take place inside the graphene after it absorbs light.

The Mainz-based researchers Dr. Hai Wang, Professor Dmitry Turchinovich, Professor Mathias Kläui, and Professor Mischa Bonn, in collaboration with scientists from various European labs, have now succeeded in understanding these processes. The project was led by Dr. Klaas-Jan Tielrooij from ICFO in Spain, who was recently elected visiting professor at the Materials Science in Mainz (MAINZ) Graduate School of Excellence.

Published recently in Science Advances, their work gives a thorough explanation of why the graphene conductivity in some cases increases after light absorption while it decreases in others. The researchers were able to show that this behavior correlates with the way in which the energy from the absorbed light flows to the graphene electrons: After light is absorbed by the graphene, the processes through which graphene electrons heat up happen extremely fast and with a very high efficiency.

For highly doped graphene with many free electrons present, ultrafast electron heating leads to carriers with elevated energy, so-called hot carriers. This, in turn, leads to a decrease in conductivity.

Interestingly enough, for weakly doped graphene with less free electrons, electron heating leads to the creation of additional free electrons and, thus, an increase in conductivity. These additional carriers are the direct result of the gapless nature of graphene. In gapped materials, electron heating does not lead to additional free carriers.

This simple scenario of light-induced electron heating in graphene can explain many observed effects. Aside from describing the conductive properties of the material after light absorption, it can explain carrier multiplication, where under specific conditions one absorbed light particle, i.e., a photon, can indirectly generate more than one additional free electron and thus create an efficient photo response within a device.

The results of the paper and, in particular, understanding electron heating processes accurately, will definitely mean a great boost in the design and development of graphene-based light detection technology.

This research work was funded by the German Research Foundation and by the European Commission under Graphene Flagship as well as by a Mineco Young Investigator grant.

Image:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_graphen_lichtsensor.jpg
Schematic representation of the ultrafast optical pump – terahertz probe experiment, where the optical pump induces electron heating and the terahertz pulse is sensitive to the conductivity of graphene directly after this heating process
Ill./©: Fabien Vialla

Publication:
Andrea Tomadin et al.
The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies
Science Advances, 11 May 2018
DOI: 10.1126/sciadv.aar5313
http://advances.sciencemag.org/content/4/5/eaar5313.full

Contact:
Dr. Hai I. Wang
Max Planck Institute for Polymer Research
55128 Mainz, GERMANY
phone +49 6131 379-522
e-mail: wanghai@mpip-mainz.mpg.de
http://www.mpip-mainz.mpg.de/5111004/dr-hai-wang

Professor Dr. Mathias Kläui
Condensed Matter Physics
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/homepage-prof-dr-mathias-klaeui/

Related links:
https://www.klaeui-lab.physik.uni-mainz.de/ – Kläui Lab at the JGU Institute of Physics
https://www.klaeui-lab.physik.uni-mainz.de/magnetic-and-electronic-properties-of... – Research project on Magnetic and electronic properties of carbon allotropes at the JGU Institute of Physics
https://www.blogs.uni-mainz.de/fb08-iph-eng/ – JGU Institute of Physics
http://www.mpip-mainz.mpg.de/home/en – Max Planck Institute for Polymer Research
http://www.mainz.uni-mainz.de/ – Graduate School of Excellence Materials Science in Mainz (MAINZ)

Read more:
http://www.uni-mainz.de/presse/aktuell/4356_ENG_HTML.php – press release " Construction set of magnon logic extended: Magnon spin currents can be controlled via spin valve structure" (14 March 2018)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Novel power meter opens the door for in-situ, real-time monitoring of high-power lasers
30.05.2018 | The Optical Society

nachricht XENON1T Experimental data establishes most stringent limit on dark matter
30.05.2018 | Rensselaer Polytechnic Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Microscopic Universe Provides Insight Into Life and Death of a Neutron

01.06.2018 | Life Sciences

Transmission of measles virus: Interaction with two cell receptors is required

01.06.2018 | Life Sciences

Dark proteome as the focus of a new Priority Program funded by the German Research Foundation

01.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>