Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phoenix Mars Team Opens Window on Scientific Process

06.08.2008
Phoenix Mars mission scientists spoke today on research in progress concerning an ongoing investigation of perchlorate salts detected in soil analyzed by the wet chemistry laboratory aboard NASA's Phoenix Lander.

"Finding perchlorates is neither good nor bad for life, but it does make us reassess how we think about life on Mars," said Michael Hecht of NASA?s Jet Propulsion Laboratory, Pasadena, Calif., lead scientist for the Microscopy, Electrochemistry and Conductivity Analyzer (MECA), the instrument that includes the wet chemistry laboratory.

If confirmed, the result is exciting, Hecht said, "because different types of perchlorate salts have interesting properties that may bear on the way things work on Mars if -- and that's a big 'if ' -- the results from our two teaspoons of soil are representative of all of Mars, or at least a significant portion of the planet."

The Phoenix team had wanted to check the finding with another lander instrument, the Thermal and Evolved-Gas Analyzer (TEGA), which heats soil and analyzes gases driven off. But as that TEGA experiment was underway last week, speculative news reports surfaced claiming the team was holding back a major finding regarding habitability on Mars.

"The Phoenix project has decided to take an unusual step" in talking about the research when its scientists are only about half-way through the data collection phase and have not yet had time to complete data analysis or perform needed laboratory work, said Phoenix principal investigator Peter Smith of the University of Arizona, Tucson. Scientists are still at the stage where they are examining multiple hypotheses, given evidence that the soil contains perchlorate.

"We decided to show the public science in action because of the extreme interest in the Phoenix mission, which is searching for a habitable environment on the northern plains of Mars," Smith added. "Right now, we don't know whether finding perchlorate is good news or bad news for possible life on Mars."

Perchlorate is an ion, or charged particle, that consists of an atom of chlorine surrounded by four oxygen atoms. It is an oxidant, that is, it can release oxygen, but it is not a powerful one. Perchlorates are found naturally on Earth at such places as Chile's hyper-arid Atacama Desert. The compounds are quite stable and do not destroy organic material under normal circumstances. Some microorganisms on Earth are fueled by processes that involve perchlorates, and some plants concentrate the substance. Perchlorates are also used in rocket fuel and fireworks.

Perchlorate was discovered with a multi-use sensor that detects perchlorate, nitrate and other ions. The MECA team saw the perchlorate signal in a sample taken from the Dodo-Goldilocks trench on June 25, or Sol 30, or the 30th Martian day of the mission after landing, and again in another sample taken from the Snow White trench on July 6, or Sol 41.

When TEGA heated a sample of soil dug from the Dodo-Goldilocks trench on Sol 25 to high temperature, it detected an oxygen release, said TEGA lead scientist William Boynton of the University of Arizona. Perchlorate could be one of several possible sources of this oxygen, he said.

Late last week, when TEGA analyzed another sample, this one from the Snow White trench, the TEGA team looked for chlorine gas. The instrument detected none.

"Had we seen it, the identification of perchlorate would be absolutely clear, but in this run we did not see any chlorine gas. We may have been analyzing a perchlorate salt that doesn't release chlorine gas upon heating," Boynton said.

"There's nothing in the TEGA data that contradicts MECA's finding of perchlorates."

As the Phoenix team continues its investigation of the artic soil, the TEGA instrument will attempt to validate the perchlorate discovery and determine its concentration and properties.

The Phoenix mission is led by Smith with project management at JPL, and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus in Denmark; the Max Planck Institute in Germany; and the Finnish Meteorological Institute. The California Institute of Technology in Pasadena manages JPL for NASA.

MEDIA CONTACTS:

Veronica McGregor/Guy Webster 818-354-5011 Jet Propulsion Laboratory, Pasadena, Calif.

Veronica.mcgregor@jpl.nasa.gov, guy.webster@jpl.nasa.gov

Dwayne Brown 202-358-1726
NASA Headquarters, Washington, D.C.
Dwayne.c.brown@nasa.gov
Sara Hammond 520-626-1974
University of Arizona
shammond@lpl.arizona.edu

Lori Stiles | University of Arizona
Further information:
http://www.nasa.gov/phoenix
http://phoenix.lpl.arizona.edu

More articles from Physics and Astronomy:

nachricht Supersensitive through quantum entanglement
28.06.2017 | Universität Stuttgart

nachricht Extremely fine measurements of motion in orbiting supermassive black holes
28.06.2017 | Stanford University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>