Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phoenix Mars Lander Finds Surprises About Planet’s Watery Past

10.09.2010
An instrument designed and built at the UA measured the isotopic composition of the Mars atmosphere, suggesting liquid water has interacted with the Martian surface throughout the planet's history.

Liquid water has interacted with the Martian surface throughout Mars' history, measurements by NASA's Phoenix Mars Lander suggest.

The findings, published in the Sept. 10 issue of the journal Science, also suggest that liquid water has primarily existed at temperatures near freezing, implying hydrothermal systems similar to Yellowstone's hot springs on Earth have been rare on Mars throughout its history.

These surprising results come from measurements Phoenix made in 2008 of stable isotopes of carbon and oxygen in the carbon dioxide of the Martian atmosphere. Isotopes are variants of the same element with a different number of neutrons, such as carbon-12, with six neutrons, and the rarer carbon-13, with seven.

Unprecedented precision in determining the ratios of isotopes in Martian carbon dioxide sheds new light on the history of water and volcanic activity on the surface of Mars.

The measurements were performed by the Evolved Gas Analyzer on Phoenix, part of the lander's Thermal and Evolved Gas Analyzer, or TEGA, an instrument designed and built at the University of Arizona. TEGA's mass spectrometer was capable of a more accurate analysis of carbon dioxide than the ones on NASA's Viking landers in the 1970s, the only other such instruments that have returned results on isotopic composition from Mars.

"We use the TEGA instrument as a crime scene investigator," said William V. Boynton, a professor at the Lunar and Planetary Lab in the UA's department of planetary sciences. "Like a chemical fingerprint, isotopes tell us what process is responsible for making the material we are studying." Boynton, who heads the group that built the TEGA instrument, co-authored the Science paper.

Carbon dioxide makes up about 95 percent of the Martian atmosphere. NASA's Mars Exploration Program has put a high priority on learning more about the isotope ratios in Martian carbon dioxide to supplement the information from Viking and from analysis of meteorites that have reached Earth from Mars.

For the measurement, the TEGA instrument on the lander opened a pin-point-sized hole while a vacuum sucked a puff of Martian atmosphere into its chamber for isotope analysis.

The analysis revealed that carbon dioxide on Mars has proportions of carbon and oxygen isotopes similar to carbon dioxide in Earth's atmosphere. This unexpected result reveals that Mars is a much more geologically active planet than previously thought. In fact, the new results suggest that Mars has replenished its atmospheric carbon dioxide relatively recently, and that the carbon dioxide has reacted with liquid water present on the surface.

"Atmospheric carbon dioxide is like a chemical spy," said Paul Niles, a space scientist at NASA's Johnson Space Center in Houston and lead author of the paper. "It infiltrates every part of the surface of Mars and can indicate the presence of water and its history."

The low gravity and lack of a magnetic field on Mars mean that as carbon dioxide resides in the atmosphere it will be lost to space, a process that favors loss of the lighter carbon-12 isotope compared to carbon-13. Although an older atmosphere on Mars should contain much more carbon-13, it doesn't. This suggests that the Martian atmosphere has been recently replenished with carbon dioxide emitted from volcanoes, and volcanism has been an active process in Mars' geologically recent past.

Another clue comes from the second element that makes up carbon dioxide: oxygen. Oxygen, like carbon, comes in different isotopes: oxygen-16 and the heavier oxygen-18.

The team compared the results from Phoenix to measurements obtained from Martian meteorites that were hurled into space from the Red Planet's surface during impact events and eventually fell onto Earth where they were later collected. The meteorites contain carbonate minerals that form only in the presence of liquid water and carbon dioxide.

"Carbon dioxide spewed into the atmosphere by volcanoes is very similar in its oxygen isotope ratio to that found in rocks," said Boynton. "But we see a big difference between the oxygen ratios of the volcanic rocks and the atmosphere."

This suggests that the carbon dioxide in the volcanic rock of Martian meteorites has reacted with liquid water, enriching the oxygen in carbon dioxide with heavier oxygen-18.

The comparisons of isotopes in Mars' atmosphere with those in the meteorites provide confirmation of key findings. For example, one meteorite that crystallized during recent geological time on Mars – about 170 million years ago rather than billions of years ago – has carbonates with isotopic proportions that match the atmospheric measurements by Phoenix.

According to Niles, the isotopic signature indicates that liquid water has been present on the Martian surface recently and abundantly enough to affect the composition of the current atmosphere. It also reveals the water has primarily existed at temperatures near its freezing point.

The results provide supporting evidence that the watery conditions associated with carbonate formation have continued even under Mars' current cold and dry conditions.

"This shows that the carbonates formed under the influence of water and the atmosphere in the recent geologic past," Boynton said.

Niles added: "The findings do not reveal specific locations or dates of liquid water and volcanic vents, but geologically recent occurrences of those conditions provide the best explanations for the isotope proportions we found."

The University of Arizona conceived of and ran the Phoenix mission, which landed near the north pole of Mars in May of 2008; it is the first Mars mission ever led by a university. The Principal Investigator is Peter H. Smith, a professor at the UA's Lunar and Planetary Lab. NASA's Jet Propulsion Laboratory in Pasadena, Calif., provided the management of the project. For his leadership on the TEGA project, Boynton was recently honored with NASA's Exceptional Public Service Medal.

CONTACTS:

William V. Boynton,
Lunar and Planetary Laboratory,
The University of Arizona,
(520) 621-6941;
wboynton@lpl.arizona.edu
Daniel Stolte,
University of Arizona Office of Communications,
520) 626-4402; stolte@email.arizona.edu

William V. Boynton | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>