Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phoenix Mars Lander Finds Surprises About Planet’s Watery Past

10.09.2010
An instrument designed and built at the UA measured the isotopic composition of the Mars atmosphere, suggesting liquid water has interacted with the Martian surface throughout the planet's history.

Liquid water has interacted with the Martian surface throughout Mars' history, measurements by NASA's Phoenix Mars Lander suggest.

The findings, published in the Sept. 10 issue of the journal Science, also suggest that liquid water has primarily existed at temperatures near freezing, implying hydrothermal systems similar to Yellowstone's hot springs on Earth have been rare on Mars throughout its history.

These surprising results come from measurements Phoenix made in 2008 of stable isotopes of carbon and oxygen in the carbon dioxide of the Martian atmosphere. Isotopes are variants of the same element with a different number of neutrons, such as carbon-12, with six neutrons, and the rarer carbon-13, with seven.

Unprecedented precision in determining the ratios of isotopes in Martian carbon dioxide sheds new light on the history of water and volcanic activity on the surface of Mars.

The measurements were performed by the Evolved Gas Analyzer on Phoenix, part of the lander's Thermal and Evolved Gas Analyzer, or TEGA, an instrument designed and built at the University of Arizona. TEGA's mass spectrometer was capable of a more accurate analysis of carbon dioxide than the ones on NASA's Viking landers in the 1970s, the only other such instruments that have returned results on isotopic composition from Mars.

"We use the TEGA instrument as a crime scene investigator," said William V. Boynton, a professor at the Lunar and Planetary Lab in the UA's department of planetary sciences. "Like a chemical fingerprint, isotopes tell us what process is responsible for making the material we are studying." Boynton, who heads the group that built the TEGA instrument, co-authored the Science paper.

Carbon dioxide makes up about 95 percent of the Martian atmosphere. NASA's Mars Exploration Program has put a high priority on learning more about the isotope ratios in Martian carbon dioxide to supplement the information from Viking and from analysis of meteorites that have reached Earth from Mars.

For the measurement, the TEGA instrument on the lander opened a pin-point-sized hole while a vacuum sucked a puff of Martian atmosphere into its chamber for isotope analysis.

The analysis revealed that carbon dioxide on Mars has proportions of carbon and oxygen isotopes similar to carbon dioxide in Earth's atmosphere. This unexpected result reveals that Mars is a much more geologically active planet than previously thought. In fact, the new results suggest that Mars has replenished its atmospheric carbon dioxide relatively recently, and that the carbon dioxide has reacted with liquid water present on the surface.

"Atmospheric carbon dioxide is like a chemical spy," said Paul Niles, a space scientist at NASA's Johnson Space Center in Houston and lead author of the paper. "It infiltrates every part of the surface of Mars and can indicate the presence of water and its history."

The low gravity and lack of a magnetic field on Mars mean that as carbon dioxide resides in the atmosphere it will be lost to space, a process that favors loss of the lighter carbon-12 isotope compared to carbon-13. Although an older atmosphere on Mars should contain much more carbon-13, it doesn't. This suggests that the Martian atmosphere has been recently replenished with carbon dioxide emitted from volcanoes, and volcanism has been an active process in Mars' geologically recent past.

Another clue comes from the second element that makes up carbon dioxide: oxygen. Oxygen, like carbon, comes in different isotopes: oxygen-16 and the heavier oxygen-18.

The team compared the results from Phoenix to measurements obtained from Martian meteorites that were hurled into space from the Red Planet's surface during impact events and eventually fell onto Earth where they were later collected. The meteorites contain carbonate minerals that form only in the presence of liquid water and carbon dioxide.

"Carbon dioxide spewed into the atmosphere by volcanoes is very similar in its oxygen isotope ratio to that found in rocks," said Boynton. "But we see a big difference between the oxygen ratios of the volcanic rocks and the atmosphere."

This suggests that the carbon dioxide in the volcanic rock of Martian meteorites has reacted with liquid water, enriching the oxygen in carbon dioxide with heavier oxygen-18.

The comparisons of isotopes in Mars' atmosphere with those in the meteorites provide confirmation of key findings. For example, one meteorite that crystallized during recent geological time on Mars – about 170 million years ago rather than billions of years ago – has carbonates with isotopic proportions that match the atmospheric measurements by Phoenix.

According to Niles, the isotopic signature indicates that liquid water has been present on the Martian surface recently and abundantly enough to affect the composition of the current atmosphere. It also reveals the water has primarily existed at temperatures near its freezing point.

The results provide supporting evidence that the watery conditions associated with carbonate formation have continued even under Mars' current cold and dry conditions.

"This shows that the carbonates formed under the influence of water and the atmosphere in the recent geologic past," Boynton said.

Niles added: "The findings do not reveal specific locations or dates of liquid water and volcanic vents, but geologically recent occurrences of those conditions provide the best explanations for the isotope proportions we found."

The University of Arizona conceived of and ran the Phoenix mission, which landed near the north pole of Mars in May of 2008; it is the first Mars mission ever led by a university. The Principal Investigator is Peter H. Smith, a professor at the UA's Lunar and Planetary Lab. NASA's Jet Propulsion Laboratory in Pasadena, Calif., provided the management of the project. For his leadership on the TEGA project, Boynton was recently honored with NASA's Exceptional Public Service Medal.

CONTACTS:

William V. Boynton,
Lunar and Planetary Laboratory,
The University of Arizona,
(520) 621-6941;
wboynton@lpl.arizona.edu
Daniel Stolte,
University of Arizona Office of Communications,
520) 626-4402; stolte@email.arizona.edu

William V. Boynton | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

IVAM Marketing Prize recognizes convincing technology marketing for the tenth time

22.08.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>