Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phoenix Mars Lander Explores Site By Trenching

21.08.2008
NASA's Phoenix Mars Lander scientists and engineers are continuing to dig into the area around the lander with the spacecraft's robotic arm, looking for new materials to analyze and examining the soil and ice subsurface structure.

New trenches opened recently include the "Burn Alive 3" trench in the "Wonderland" digging area in the eastern portion of the arm's reachable workspace. Researchers choose such names informally to aid discussion.

The team is excavating one side of Burn Alive 3 down to the ice layer and plans to leave about 1 centimeter (0.4 inch) of soil above the ice on the other side. This intermediate depth, located a couple centimeters (0.8 inch) above the Martian ice-soil boundary, gives the science team the vertical profile desired for a sample dubbed "Burning Coals," intended to be the next material delivered to Phoenix's Thermal and Evolved Gas Analyzer (TEGA).

The surface of the ground throughout the arctic plain where Phoenix landed is patterned in polygon shapes like those of permafrost areas on Earth, where the ground goes through cycles of swelling and shrinking. Some of the recent and planned digging by Phoenix takes advantage of landing within arm's reach both of the centers of polygons and the troughs between polygons. For example, the "Stone Soup" trench has been dug in a trough in the "Cupboard" excavation area, near the western end of the arm's workspace. The team plans to dig in this zone as deep as possible to study properties of the soil and ice deep in a polygon trough.

A sample from the Cupboard area may be delivered to the lander's wet chemistry lab, part of the Microscopy, Electrochemistry and Conductivity Analyzer (MECA). The location for obtaining a sample would depend on results from further digging in "Upper Cupboard," and use of the thermal and electrical conductivity probe on the arm, inserted into icy soil within Upper Cupboard to test for the presence of salts.

In addition, Phoenix's robotic arm would acquire ice-rich soil from "Upper Cupboard" and observe the material in the arm's scoop to determine whether the sample sublimates. Melting is an indication of the presence of salt. If the sample melts and leaves behind a salty deposit, "Upper Cupboard" would be the location for the next sample for the wet chemistry lab. If no salts are detected, the team would continue with plans to use the "Stone Soup" trench for acquiring the next wet chemistry lab sample.

"We expect to use the robotic arm heavily over the next several weeks, delivering samples to our instruments and examining trench floors and walls to continue to search for evidence of lateral and vertical variations in soil and ice structures," said Ray Arvidson, Phoenix's "dig czar," from Washington University in St. Louis.

The Phoenix science and engineering teams have transitioned to "Earth time," with the teams working a parallel daytime shift not tied to the current time on Mars. Daily activities are being planned for the spacecraft as the lander performs activities that were sent up the previous day. Digging and documenting are done on alternate days to allow the science team time to analyze data and adjust activities accordingly.

In upcoming sols, the team plans to scrape the "Snow White" trench and experiment with acquiring and holding samples in the shade versus the sun. They want to find out if prolonged exposure to sunlight causes the acquired material to stick to the scoop, as has occurred with previous samples.

The Phoenix mission is led by Peter Smith of The University of Arizona with project management at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

MEDIA CONTACTS:

Guy Webster, NASA Jet Propulsion Lab
818-354-5011 guy.webster@jpl.nasa.gov
Dwayne Brown, NASA Headquarters, Washington
202-358-1726 dwayne.c.brown@nasa.gov
Sara Hammond, University of Arizona
520-626-4402 shammond@lpl.arizona.edu

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu

Further reports about: Burn Alive 3 Burning Coals Mars NASA PHOENIX spacecraft's robotic arm

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>