Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesky Insect Inspires Practical Technology

11.09.2014

Inspired by the Compound Eyes of Common Fly, Penn State Researchers Determine How to Make Miniature Omnidirectional Sources of Light and Optical Sensors

 In our vain human struggle to kill flies, our hands and swatters often come up lacking. This is due to no fault of our own, but rather to flies’ compound eyes. Arranged in a hexagonal, convex pattern, compound eyes consist of hundreds of optical units called ommatidia, which together bestow upon flies a nearly 360-degree field of vision. With this capability in mind, a team of researchers at Pennsylvania State University is drawing on this structure to create miniature light-emitting devices and optical sensors.


D.P. Pulsifer/PSU

The position and structure at the micron- and nano-scales of the compound eyes of flies provide them a wide angular field of view

“We were inspired by those eyes,” said Raúl J. Martín-Palma, an adjunct professor of Materials Science and Engineering at Pennsylvania State University. “We said, ‘OK, we can make something artificial using the same replicating structure to emit light in all directions, rather than what we have now, which is just planar, light-emitting diodes.’” Martín-Palma has been involved in work with ‘bioinspiration,’ in which ideas and concepts from nature are implemented in different fields of science and engineering, for the past seven years. He and fellow researchers describe their work in the journal Applied Physics Letters, which is produced by AIP Publishing.

Theoretical analysis of the compound eyes’ optical properties was complicated by the ommaditias’ nanonipples, 200-nanometer, tapered projections whose minute size make simulated calculations nearly impossible, due to its unpredictable scattering of light.

... more about:
»AIP »coating »diodes »emit »flies »physics »structure

“It is much easier to just go ahead and fabricate the actual device and see what happens,” Martín-Palma said. So they did.

To test the structure’s light-scattering properties, the researchers extracted corneas from blow flies and coated them with a 900-nm-thick layer of tris(8-hydroxyquinolinato)aluminum, a well-known fluorescent polymer. They then induced the modified surface to emit visible light by exposing it to diffuse ultraviolet light.

When compared to a similarly coated flat surface, the modified ommatidia demonstrated a lesser angular dependence of emission, meaning that they tended to scatter light more uniformly in all directions.

“By coating the eyes, we were able to have a better light emission, or a better angular distribution of light emission,” Martín-Palma said.

This increased emission and angular distribution means that the pattern of the fly’s cornea could soon be adapted into extremely minute light-emitting diodes and detectors, which would be able to process light output and input from a staggeringly wide field of vision.

While the corneas used in the experiment were taken from fruit flies, Martín-Palma and his colleagues do not advocate the mass harvesting of flies to create light sources.

“We have already developed a technique to mass-replicate biotemplates at the nanoscale, including compound eyes of insects,” Martín-Palma said. “So now when we want to make 100 bioreplicated eyes, we don’t have to kill 50 flies. We can make multiple copies out of one template.”

The next step in Martín-Palma’s research is to expand the coating procedure to include other species’ compound eyes, in order to identify the optimal structure for omni-directional light emission. Future work also includes fabricating a light-emitting diode in the shape of a compound eye, and ultimately creating omni-directional light detectors.

The article, "Angular distribution of light emission from compound-eye cornea with conformant fluorescent coating," is authored by Raúl J. Martín-Palma, Amy E. Miller, Drew P. Pulsifer, and Aklesh Lakhtakia. It will appear in the journal Applied Physics Letters on September 9, 2014. After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/105/10/10.1063/1.4895114

ABOUT THE JOURNAL
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Contact Information

Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi | newswise

Further reports about: AIP coating diodes emit flies physics structure

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>