Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pesky Insect Inspires Practical Technology


Inspired by the Compound Eyes of Common Fly, Penn State Researchers Determine How to Make Miniature Omnidirectional Sources of Light and Optical Sensors

 In our vain human struggle to kill flies, our hands and swatters often come up lacking. This is due to no fault of our own, but rather to flies’ compound eyes. Arranged in a hexagonal, convex pattern, compound eyes consist of hundreds of optical units called ommatidia, which together bestow upon flies a nearly 360-degree field of vision. With this capability in mind, a team of researchers at Pennsylvania State University is drawing on this structure to create miniature light-emitting devices and optical sensors.

D.P. Pulsifer/PSU

The position and structure at the micron- and nano-scales of the compound eyes of flies provide them a wide angular field of view

“We were inspired by those eyes,” said Raúl J. Martín-Palma, an adjunct professor of Materials Science and Engineering at Pennsylvania State University. “We said, ‘OK, we can make something artificial using the same replicating structure to emit light in all directions, rather than what we have now, which is just planar, light-emitting diodes.’” Martín-Palma has been involved in work with ‘bioinspiration,’ in which ideas and concepts from nature are implemented in different fields of science and engineering, for the past seven years. He and fellow researchers describe their work in the journal Applied Physics Letters, which is produced by AIP Publishing.

Theoretical analysis of the compound eyes’ optical properties was complicated by the ommaditias’ nanonipples, 200-nanometer, tapered projections whose minute size make simulated calculations nearly impossible, due to its unpredictable scattering of light.

... more about:
»AIP »coating »diodes »emit »flies »physics »structure

“It is much easier to just go ahead and fabricate the actual device and see what happens,” Martín-Palma said. So they did.

To test the structure’s light-scattering properties, the researchers extracted corneas from blow flies and coated them with a 900-nm-thick layer of tris(8-hydroxyquinolinato)aluminum, a well-known fluorescent polymer. They then induced the modified surface to emit visible light by exposing it to diffuse ultraviolet light.

When compared to a similarly coated flat surface, the modified ommatidia demonstrated a lesser angular dependence of emission, meaning that they tended to scatter light more uniformly in all directions.

“By coating the eyes, we were able to have a better light emission, or a better angular distribution of light emission,” Martín-Palma said.

This increased emission and angular distribution means that the pattern of the fly’s cornea could soon be adapted into extremely minute light-emitting diodes and detectors, which would be able to process light output and input from a staggeringly wide field of vision.

While the corneas used in the experiment were taken from fruit flies, Martín-Palma and his colleagues do not advocate the mass harvesting of flies to create light sources.

“We have already developed a technique to mass-replicate biotemplates at the nanoscale, including compound eyes of insects,” Martín-Palma said. “So now when we want to make 100 bioreplicated eyes, we don’t have to kill 50 flies. We can make multiple copies out of one template.”

The next step in Martín-Palma’s research is to expand the coating procedure to include other species’ compound eyes, in order to identify the optimal structure for omni-directional light emission. Future work also includes fabricating a light-emitting diode in the shape of a compound eye, and ultimately creating omni-directional light detectors.

The article, "Angular distribution of light emission from compound-eye cornea with conformant fluorescent coating," is authored by Raúl J. Martín-Palma, Amy E. Miller, Drew P. Pulsifer, and Aklesh Lakhtakia. It will appear in the journal Applied Physics Letters on September 9, 2014. After that date, it can be accessed at:

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See:

Contact Information

Jason Socrates Bardi
+1 240-535-4954

Jason Socrates Bardi | newswise

Further reports about: AIP coating diodes emit flies physics structure

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>