Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesky Insect Inspires Practical Technology

11.09.2014

Inspired by the Compound Eyes of Common Fly, Penn State Researchers Determine How to Make Miniature Omnidirectional Sources of Light and Optical Sensors

 In our vain human struggle to kill flies, our hands and swatters often come up lacking. This is due to no fault of our own, but rather to flies’ compound eyes. Arranged in a hexagonal, convex pattern, compound eyes consist of hundreds of optical units called ommatidia, which together bestow upon flies a nearly 360-degree field of vision. With this capability in mind, a team of researchers at Pennsylvania State University is drawing on this structure to create miniature light-emitting devices and optical sensors.


D.P. Pulsifer/PSU

The position and structure at the micron- and nano-scales of the compound eyes of flies provide them a wide angular field of view

“We were inspired by those eyes,” said Raúl J. Martín-Palma, an adjunct professor of Materials Science and Engineering at Pennsylvania State University. “We said, ‘OK, we can make something artificial using the same replicating structure to emit light in all directions, rather than what we have now, which is just planar, light-emitting diodes.’” Martín-Palma has been involved in work with ‘bioinspiration,’ in which ideas and concepts from nature are implemented in different fields of science and engineering, for the past seven years. He and fellow researchers describe their work in the journal Applied Physics Letters, which is produced by AIP Publishing.

Theoretical analysis of the compound eyes’ optical properties was complicated by the ommaditias’ nanonipples, 200-nanometer, tapered projections whose minute size make simulated calculations nearly impossible, due to its unpredictable scattering of light.

... more about:
»AIP »coating »diodes »emit »flies »physics »structure

“It is much easier to just go ahead and fabricate the actual device and see what happens,” Martín-Palma said. So they did.

To test the structure’s light-scattering properties, the researchers extracted corneas from blow flies and coated them with a 900-nm-thick layer of tris(8-hydroxyquinolinato)aluminum, a well-known fluorescent polymer. They then induced the modified surface to emit visible light by exposing it to diffuse ultraviolet light.

When compared to a similarly coated flat surface, the modified ommatidia demonstrated a lesser angular dependence of emission, meaning that they tended to scatter light more uniformly in all directions.

“By coating the eyes, we were able to have a better light emission, or a better angular distribution of light emission,” Martín-Palma said.

This increased emission and angular distribution means that the pattern of the fly’s cornea could soon be adapted into extremely minute light-emitting diodes and detectors, which would be able to process light output and input from a staggeringly wide field of vision.

While the corneas used in the experiment were taken from fruit flies, Martín-Palma and his colleagues do not advocate the mass harvesting of flies to create light sources.

“We have already developed a technique to mass-replicate biotemplates at the nanoscale, including compound eyes of insects,” Martín-Palma said. “So now when we want to make 100 bioreplicated eyes, we don’t have to kill 50 flies. We can make multiple copies out of one template.”

The next step in Martín-Palma’s research is to expand the coating procedure to include other species’ compound eyes, in order to identify the optimal structure for omni-directional light emission. Future work also includes fabricating a light-emitting diode in the shape of a compound eye, and ultimately creating omni-directional light detectors.

The article, "Angular distribution of light emission from compound-eye cornea with conformant fluorescent coating," is authored by Raúl J. Martín-Palma, Amy E. Miller, Drew P. Pulsifer, and Aklesh Lakhtakia. It will appear in the journal Applied Physics Letters on September 9, 2014. After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/105/10/10.1063/1.4895114

ABOUT THE JOURNAL
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Contact Information

Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi | newswise

Further reports about: AIP coating diodes emit flies physics structure

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>