Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perfect nanospheres using ultrashort laser pulses

16.04.2014

The Nanophotonics Group of the Laser Zentrum Hannover e.V. (LZH) has developed a method to print nanoparticles made of different materials with controlled, reproducible sizes and to precisely deposit these particles on a receiver substrate.

As a result, for the first time, the scientists succeeded in generating and positioning perfectly round silicon nanoparticles with a diameter of 165 nm. This method was presented in the March 4th issue of Nature Communications.


Molten silicon forms nanoparticles which, due to the surface tension, fly onto a receiver substrate.

Foto: LZH


Laser-printed silicon nanoparticles in amorphous (red) and crystalline phase (yellow).

Foto: LZH

For the first time, scientists at the LZH were able to fabricate perfectly round silicon nanoparticles with a diameter of 165 nm and to arrange them in ordered structures. This was achieved with their newly developed method that was published in the March 4th issue of Nature Communications.

This novel method uses ultrashort laser pulses to print nanoparticles with sizes in the two to three digit nanometer range made of different materials, such as metals, semiconductors and dielectrics. Afterwards, these nanoparticles can be precisely deposited on a receiver substrate.

Nanoparticles exhibit the unique optical property to scatter only light of a particular wavelength. Irradiated with white light and de-pending on their size, shape and on the interaction with their environment, they appear in a certain color. Therefore, they can be used for various applications in medicine and sensor technology.

Particle formation through surface tension
The starting point for the fabrication process is a thin layer of the material of which the nanoparticles shall be made. This layer is irradiated and molten using a single ultrashort laser pulse. Owing to the surface tension of the molten material, a nanosphere is formed which moves up and is finally captured by the receiver substrate. The position of the particles on the receiver material can be controlled very precisely.

Accurate and controllable
„This novel method is the first that allows for both fabricating and precisely depositing nanoparticles of a certain size”, explains Prof. Dr. Boris Chichkov, head of the Nanotechnology Department. “In this respect, our method is far superior to chemical processes which can produce large quantities of nanoparticles but not place them at the desired position.” With this method, two- or three-dimensionally arranged particle structures, such as nanoantennas, nanolasers and metamaterials, can be generated.

From the amorphous to the crystalline phase with the second pulse
The fabrication of silicon nanoparticles of a certain size is particu-larly interesting because of their special optical properties: They mainly scatter the visible light strongly, and besides the electrical field they also react to the magnetic field component. Other mate-rials, however, almost exclusively interact with the electrical field only. According to the Mie theory, the magnetic light is scattered here, too. After printing, the fabricated silicon particles are in amorphous phase and can be transformed into the crystalline phase with a second laser pulse.

„The results have already lead to the emergence of silicon nano-photonics as a new research field of worldwide interest”, says Chichkov. "Therefore, the new method will certainly find many new applications.

The investigations were carried out within the scope of the SPP 1391 “Ultrafast Nanooptics” priority program and the collaborative research center “Transregio 123 – Planar Optronic Systems” (PlanOS). Both programs are funded by the German Research Foundation (DFG).

The article was published in Nature Communications | 5:3402 | DOI: 10.1038/ncomms4402

Lena Bennefeld | Laser Zentrum Hannover e.V.

More articles from Physics and Astronomy:

nachricht Mainz-based physicists find missing link between glass formation and crystallization
01.07.2016 | Johannes Gutenberg-Universität Mainz

nachricht Astronomers release spectacular survey of the distant universe
01.07.2016 | University of Nottingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mainz-based physicists find missing link between glass formation and crystallization

Densified regions with drastically reduced internal motion either act as crystal precursors or cluster and frustrate all further dynamics

Glasses are neither fluids nor crystals. They are amorphous solids and one of the big puzzles in condensed matter physics. For decades, the question of how...

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Mainz-based physicists find missing link between glass formation and crystallization

01.07.2016 | Physics and Astronomy

Scientists observe first signs of healing in the Antarctic ozone layer

01.07.2016 | Earth Sciences

MRI technique induces strong, enduring visual association

01.07.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>