Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Perfect nanospheres using ultrashort laser pulses


The Nanophotonics Group of the Laser Zentrum Hannover e.V. (LZH) has developed a method to print nanoparticles made of different materials with controlled, reproducible sizes and to precisely deposit these particles on a receiver substrate.

As a result, for the first time, the scientists succeeded in generating and positioning perfectly round silicon nanoparticles with a diameter of 165 nm. This method was presented in the March 4th issue of Nature Communications.

Molten silicon forms nanoparticles which, due to the surface tension, fly onto a receiver substrate.

Foto: LZH

Laser-printed silicon nanoparticles in amorphous (red) and crystalline phase (yellow).

Foto: LZH

For the first time, scientists at the LZH were able to fabricate perfectly round silicon nanoparticles with a diameter of 165 nm and to arrange them in ordered structures. This was achieved with their newly developed method that was published in the March 4th issue of Nature Communications.

This novel method uses ultrashort laser pulses to print nanoparticles with sizes in the two to three digit nanometer range made of different materials, such as metals, semiconductors and dielectrics. Afterwards, these nanoparticles can be precisely deposited on a receiver substrate.

Nanoparticles exhibit the unique optical property to scatter only light of a particular wavelength. Irradiated with white light and de-pending on their size, shape and on the interaction with their environment, they appear in a certain color. Therefore, they can be used for various applications in medicine and sensor technology.

Particle formation through surface tension
The starting point for the fabrication process is a thin layer of the material of which the nanoparticles shall be made. This layer is irradiated and molten using a single ultrashort laser pulse. Owing to the surface tension of the molten material, a nanosphere is formed which moves up and is finally captured by the receiver substrate. The position of the particles on the receiver material can be controlled very precisely.

Accurate and controllable
„This novel method is the first that allows for both fabricating and precisely depositing nanoparticles of a certain size”, explains Prof. Dr. Boris Chichkov, head of the Nanotechnology Department. “In this respect, our method is far superior to chemical processes which can produce large quantities of nanoparticles but not place them at the desired position.” With this method, two- or three-dimensionally arranged particle structures, such as nanoantennas, nanolasers and metamaterials, can be generated.

From the amorphous to the crystalline phase with the second pulse
The fabrication of silicon nanoparticles of a certain size is particu-larly interesting because of their special optical properties: They mainly scatter the visible light strongly, and besides the electrical field they also react to the magnetic field component. Other mate-rials, however, almost exclusively interact with the electrical field only. According to the Mie theory, the magnetic light is scattered here, too. After printing, the fabricated silicon particles are in amorphous phase and can be transformed into the crystalline phase with a second laser pulse.

„The results have already lead to the emergence of silicon nano-photonics as a new research field of worldwide interest”, says Chichkov. "Therefore, the new method will certainly find many new applications.

The investigations were carried out within the scope of the SPP 1391 “Ultrafast Nanooptics” priority program and the collaborative research center “Transregio 123 – Planar Optronic Systems” (PlanOS). Both programs are funded by the German Research Foundation (DFG).

The article was published in Nature Communications | 5:3402 | DOI: 10.1038/ncomms4402

Lena Bennefeld | Laser Zentrum Hannover e.V.

More articles from Physics and Astronomy:

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

nachricht Iowa State astronomers say comet fragments best explanation of mysterious dimming star
25.11.2015 | Iowa State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>