Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How people work ... and the fingerprint mystery

06.01.2010
Why do we chew our food? Research has shown that it is not, as has long been presumed, to make chunks of food small enough to swallow without choking. Biomechanics, who have modelled the cohesive strength of food after a certain amount of chewing, have shown that we actually chew our food to ensure it is in a firm blob and, therefore, safe to swallow.

Writing in January's Physics World, Dr Roland Ennos, a biomechanic in the Faculty of Life Sciences at University of Manchester, explains how we need to look beyond obvious answers if we are to understand how our own bodies work.

Explaining why we swing our arms, why we have notched teeth, why our fingernails always break in the same direction, and, still puzzling, why we have fingerprints, Dr Ennos shows how rich the boundary between biology and physics is in, some counter-intuitive but, potentially significant discoveries.

On the fingerprint puzzle, we know that fingerprints are useful to identify people for security and crime detection, but no scientist has ever suggested that fingerprints evolved specifically for this purpose. It has been thought that fingerprints help us to grip more tightly to objects, but tests show that a rough surface does not actually increase the friction of soft materials such as skin.

Fingerprint friction is therefore a mystery that has left Dr Ennos's team testing a number of options - it could be that fingerprints act like the treads on tyres, removing water and so increasing friction under wet conditions. Another possibility is that prints also make the skin more flexible and stop it blistering.

As Dr Ennos writes, "The answers to these questions may appear obvious or even trivial, but further thought and experiment is revealing that our world is far more fascinating than we could have dreamed."

What's more, this sort of research, unlike many areas of physics, is not expensive or mathematically hard. "All you need is an enquiring mind, a bit of ingenuity and the courage to ask awkward questions," concludes Dr Ennos.

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>