Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Make First All-optical Nanowire Switch

11.09.2012
Computers may be getting faster every year, but those advances in computer speed could be dwarfed if their 1’s and 0’s were represented by bursts of light, instead of electricity.
Researchers at the University of Pennsylvania have made an important advance in this frontier of photonics, fashioning the first all-optical photonic switch out of cadmium sulfide nanowires. Moreover, they combined these photonic switches into a logic gate, a fundamental component of computer chips that process information.

The research was conducted by associate professor Ritesh Agarwal and graduate student Brian Piccione of the Department of Materials Science and Engineering in Penn’s School of Engineering and Applied Science. Post-doctoral fellows Chang-Hee Cho and Lambert van Vugt, also of the Materials Science Department, contributed to the study.

It was published in the journal Nature Nanotechnology.

The research team’s innovation built upon their earlier research, which showed that their cadmium sulfide nanowires exhibited extremely strong light-matter coupling, making them especially efficient at manipulating light. This quality is crucial for the development of nanoscale photonic circuits, as existing mechanisms for controlling the flow of light are bulkier and require more energy than their electronic analogs.

“The biggest challenge for photonic structures on the nanoscale is getting the light in, manipulating it once it's there and then getting it out,” Agarwal said. “Our major innovation was how we solved the first problem, in that it allowed us to use the nanowires themselves for an on-chip light source.”

The research team began by precisely cutting a gap into a nanowire. They then pumped enough energy into the first nanowire segment that it began to emit laser light from its end and through the gap. Because the researchers started with a single nanowire, the two segment ends were perfectly matched, allowing the second segment to efficiently absorb and transmit the light down its length.

“Once we have the light in the second segment, we shine another light through the structure and turn off what is being transported through that wire,” Agarwal said. “That's what makes it a switch.”

The researchers were able to measure the intensity of the light coming out of the end of the second nanowire and to show that the switch could effectively represent the binary states used in logic devices.

“Putting switches together lets you make logic gates, and assembling logic gates allows you to do computation,” Piccione said. “We used these optical switches to construct a NAND gate, which is a fundamental building block of modern computer processing.”

A NAND gate, which stands for “not and,” returns a “0” output when all its inputs are “1.” It was constructed by the researchers by combining two nanowire switches into a Y-shaped configuration. NAND gates are important for computation because they are “functionally complete,” which means that, when put in the right sequence, they can do any kind of logical operation and thus form the basis for general-purpose computer processors.

“We see a future where ‘consumer electronics’ become ‘consumer photonics’,” Agarwal said. “And this study shows that is possible.”

The research was supported by the U.S. Army Research Office and the National Institutes of Health’s New Innovator Award Program.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>