Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Metamaterials Experts Show a Way to Reduce Electrons’ Effective Mass to Nearly Zero

19.12.2012
The field of metamaterials involves augmenting materials with specially designed patterns, enabling those materials to manipulate electromagnetic waves and fields in previously impossible ways.

Now, researchers from the University of Pennsylvania have come up with a theory for moving this phenomenon onto the quantum scale, laying out blueprints for materials where electrons have nearly zero effective mass.

Such materials could make for faster circuits with novel properties.

The work was conducted by Nader Engheta, the H. Nedwill Ramsey Professor of Electrical and Systems Engineering in Penn’s School of Engineering and Applied Science, and Mario G. Silveirinha, who was a visiting scholar at the Engineering School when their collaboration began. He is currently an associate professor at the University of Coimbra, Portugal.

Their paper was published in the journal Physical Review B: Rapid Communications.

Their idea was born out of the similarities and analogies between the mathematics that govern electromagnetic waves — Maxwell’s Equations — and those that govern the quantum mechanics of electrons — Schrödinger’s Equations.

On the electromagnetic side, inspiration came from work the two researchers had done on metamaterials that manipulate permittivity, a trait of materials related to their reaction to electric fields. They theorized that, by alternating between thin layers of materials with positive and negative permittivity, they could construct a bulk metamaterial with an effective permittivity at or near zero. Critically, this property is only achieved when an electromagnetic wave passes through the layers head on, against the grain of the stack. This directional dependence, known as anisotropy, has practical applications.

The researchers saw parallels between this phenomenon and the electron transport behavior demonstrated in Leo Esaki’s Nobel Prize-winning work on superlattices in the 1970s: semiconductors constructed out of alternating layers of materials, much like the permittivity-altering metamaterial.

A semiconductor’s qualities stem from the lattice-like pattern its constituent atoms are arranged in; an electron must navigate the electric potentials of all of these atoms, moving faster or slower depending on how directly it can pass by them. Esaki and his colleagues showed that, by making a superlattice out of layers of different materials, they could produce a composite material that had different electron transport properties than either of the components.

Though the actual mass of electrons is fixed, Engheta and Silveirinha thought the same principle could be applied to the effective mass of the electron. Engineers have been tailoring materials to alter the effective mass of electrons for decades; existing semiconductors that give electrons a negative effective mass were a prerequisite for the team's new theory.

“Imagine you have a ball inside a fluid,” Engheta said. “You can calculate how fast the ball falls as a combination of the force of gravity and the reaction of the fluid, or you can say that the ball has an effectively different mass in the fluid than it does normally. The effective mass can even be negative, which we see in the case of a bubble. The bubble looks like it has negative mass, because it’s moving against gravity, but it is really the fluid moving down around it.”

Like the optical metamaterial with alternating bands of positive and negative permittivity, Engheta and Silveirinha theorized, a material with alternating bands of positive and negative effective electron mass would allow the overall structure's effective electron mass to approach zero.

And like the optical metamaterial, the electron’s effective mass in this case would be anisotropic. While travelling against the grain of the alternating materials, its effective mass would be near-zero, and thus it would travel very fast. But trying to move the electron along the grain would result in a very high effective mass, making it very difficult for it to move at all.
“In the direction the electrons are collimated, we see an effective mass of zero,” Engheta said. “This is like what we see with graphene, where electrons have an effective mass of zero but only along its plane.

“But a plane of graphene is only one atom thick, whereas here we would see that property in a bulk material. It’s essentially like the material has wires running through it, even though there is no wire surface.”

As with graphene, the properties of this composite material would be dependent on structure at the smallest scale; a few stray atoms could significantly degrade the material’s overall performance. A single uniform layer of atoms is ideal in both cases, and, while deposition techniques are improving, working at the scale of a few nanometers still represents a physical challenge. The team hopes to address this challenge in future studies.

“While physics prevents us from having infinite velocity, having materials that give electrons near-zero effective mass will let us move them much faster,” Engheta said.

The research was supported by the U.S. Air Force Office of Scientific Research.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>