Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penguin-inspired propulsion system

15.11.2013
Back in 1991, Nature published a picture from the IMAX movie Antarctica, along with the caption: "Emperor penguins may be waddling jokes on land, but underwater they can turn into regular rockets…accelerating from 0 to 7 m/s in less than a second."

That's all it took to inspire Flavio Noca, who at the time was a graduate student in Caltech's Aeronautics Department, and now teaches aerodynamics at the University of Applied Sciences Western Switzerland (hepia) and the Swiss Federal Institute of Technology (EPFL), to explore leveraging penguins' "rocket" properties to create new propulsion technologies with high maneuverability and improved hydrodynamic efficiency.


This actuated spherical joint mimics a penguin shoulder while enabling compactness, rigidity and high motion frequencies, as well as unlimited rotation (propeller-like, not shown on the video) about a single shaft.

Credit: hepia/B.Sudki-M.Lauria-F.Noca

At the American Physical Society's (APS) Division of Fluid Dynamics meeting, Nov. 24 – 26, in Pittsburgh, Pa, Noca will present a penguin-inspired propulsion system that uses a novel spherical joint mechanism developed and manufactured by Bassem Sudki, a research assistant within Noca's aerodynamics group, under the supervision of Professor Michel Lauria who leads hepia's Robotics Laboratory.

Based on a penguin's shoulder-and-wing system, the mechanism features a spherical joint that enables three degrees of freedom and a fixed center of rotation. "Unlike an animal shoulder joint, however, this spherical joint enables unlimited rotational range about the main shaft axis like a propeller," Noca said.

To achieve this they needed to overcome the technical challenges of spherical joints, such as the lack of rigidity and the inability to generate high torques. To understand the challenge involved, just try lifting a 10-pound weight on your hand with your arm extended.

The researchers maneuvered around these challenges by choosing a parallel robotic architecture for this type of mechanism, because it enables rigidity as well as high actuation frequencies and amplitudes.

"Because the motors are fixed, inertial forces are lower than for a serial robotic mechanism, such as a multi-joint arm," explains Noca. "The resulting spherical parallel mechanism with coaxial shafts was designed and manufactured with these specifications: a fixed center of rotation (spherical joint), a working frequency of ~2.5 Hz under charge, an unlimited rotation about the main axis, and an arbitrary motion within a cone of +/- 60°."

The manner in which penguins swim is still poorly understood, aside from the technological perspective, according to Noca. "By accurately reproducing an actual penguin wing movement, we hope to shed light on the swimming mysteries of these underwater rockets," he said.

The talk, "Robotic Penguin-like Propulsor with Novel Spherical Joint," is at is at 2:36 p.m. on Tuesday, November 26, 2013 in the David L. Lawrence Convention Center, Room 321. ABSTRACT: http://meeting.aps.org/Meeting/DFD13/Event/204311

MEETING INFORMATION

The 66th Annual Division of Fluid Dynamics Meeting will be held at David L. Lawrence Convention Center in Pittsburgh, Pennsylvania from November 24-26, 2013. More meeting information: http://www.apsdfd2013.pitt.edu

REGISTERING AS PRESS

Any credentialed journalist, full-time or freelance, may attend the conference free of charge. Please email: dfdmedia@aps.org and include "DFD Press" in the subject line. Work space will be provided on-site during the meeting and news and graphics will be hosted on the Virtual Press Room: http://www.aps.org/units/dfd/pressroom/press.cfm

ABOUT THE APS DIVISION OF FLUID DYNAMICS

The Division of Fluid Dynamics of the American Physical Society (APS) exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. DFD Website: http://www.aps.org/units/dfd/index.cfm

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>