Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peeking into Schrodinger's box

21.01.2014
Measurement technology continues to show its potential for quantum information

Until recently measuring a 27-dimensional quantum state would have been a time-consuming, multistage process using a technique called quantum tomography, which is similar to creating a 3D image from many 2D ones.

Researchers at the University of Rochester have been able to apply a recently developed, alternative method called direct measurement to do this in a single experiment with no post-processing.

The work is of interest because fast, accurate and efficient methods for characterizing high-dimensional states like this could be central in developing high security quantum communications systems, as well as to probe our fundamental understanding of quantum mechanics.

The work was published this week in Nature Communications by a team of researchers from the University of Rochester and the University of Glasgow. In the paper they demonstrate direct measurements of the quantum state associated with the orbital-angular momentum.

"Our work shows that direct measurement offers an exciting alternative to quantum tomography," said Robert Boyd, Professor of Optics and Physics at the

University of Rochester and Canada Excellence Research Chair in Quantum Nonlinear Optics at the University of Ottawa. "As the field of quantum information continues to advance, we expect direct measurement to play an increasingly important role in this." Boyd added that although it is unclear exactly how much more efficient direct measurement is compared to quantum tomography, the lack of post-processing is a major factor in speeding-up direct measurements.

The direct measurement technique offers a way to directly determine the state of a quantum system. It was first developed in 2011 by scientists at the National Research Council Canada, who used it to determine the position and momentum of photons. Last year, a group of Rochester/Ottawa researchers led by Boyd showed that direct measurement could be applied to measure the polarization states of light. The new paper is the first time this method has been applied to a discrete, high dimensional system.

Such direct measurements of the wavefunction might have appeared to be ruled out by the uncertainty principle – the idea that certain properties of a quantum system could be known with precision only if other properties were known poorly. However, direct measurement involves a "trick" that makes it possible.

Direct measurements consists of two types of measurements performed one after the other, first a "weak" measurement followed by a "strong" measurement. In quantum mechanics the act of measuring a quantum state disturbs it irreversibly, a phenomenon referred to as collapse of the wavefunction. The trick lies with the first measurement being so gentle that it only slightly disturbs the system and does not cause the wavefunction to collapse.

"It is sort of like peeking into the box to see if Schrodinger's cat is alive, without fully opening the box," said lead author Dr. Mehul Malik, currently a post-doctoral research fellow at the University of Vienna and who was a Ph.D. in Boyd's group when the work was performed. "The weak measurement is essentially a bad measurement, which leaves you mostly uncertain about whether the cat is alive or dead. It does, however¬, give partial information on the health of the cat, which when repeated many times can lead to near certain information as to whether the cat is alive or dead." Malik adds that the beauty of the weak measurement is that it does not destroy the system, unlike most standard measurements of a quantum system, allowing a subsequent measurement—the "strong" measurement of the other variable.

This sequence of weak and strong measurements is then repeated for multiple identically prepared quantum systems, until the wave function is known with the required precision.

Ph.D. student Mohammad Mirhosseini was also part of the Rochester team. Other collaborators included Professor Miles Padgett and Martin Lavery from the University of Glasgow, UK, and Dr. Jonathan Leach, from Heriot-Watt University, Edinburgh, UK.

About the University of Rochester

The University of Rochester is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, School of Medicine and Dentistry, School of Nursing, Eastman Institute for Oral Health, and the Memorial Art Gallery.

Leonor Sierra | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>