Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peeking into Schrodinger's box

21.01.2014
Measurement technology continues to show its potential for quantum information

Until recently measuring a 27-dimensional quantum state would have been a time-consuming, multistage process using a technique called quantum tomography, which is similar to creating a 3D image from many 2D ones.

Researchers at the University of Rochester have been able to apply a recently developed, alternative method called direct measurement to do this in a single experiment with no post-processing.

The work is of interest because fast, accurate and efficient methods for characterizing high-dimensional states like this could be central in developing high security quantum communications systems, as well as to probe our fundamental understanding of quantum mechanics.

The work was published this week in Nature Communications by a team of researchers from the University of Rochester and the University of Glasgow. In the paper they demonstrate direct measurements of the quantum state associated with the orbital-angular momentum.

"Our work shows that direct measurement offers an exciting alternative to quantum tomography," said Robert Boyd, Professor of Optics and Physics at the

University of Rochester and Canada Excellence Research Chair in Quantum Nonlinear Optics at the University of Ottawa. "As the field of quantum information continues to advance, we expect direct measurement to play an increasingly important role in this." Boyd added that although it is unclear exactly how much more efficient direct measurement is compared to quantum tomography, the lack of post-processing is a major factor in speeding-up direct measurements.

The direct measurement technique offers a way to directly determine the state of a quantum system. It was first developed in 2011 by scientists at the National Research Council Canada, who used it to determine the position and momentum of photons. Last year, a group of Rochester/Ottawa researchers led by Boyd showed that direct measurement could be applied to measure the polarization states of light. The new paper is the first time this method has been applied to a discrete, high dimensional system.

Such direct measurements of the wavefunction might have appeared to be ruled out by the uncertainty principle – the idea that certain properties of a quantum system could be known with precision only if other properties were known poorly. However, direct measurement involves a "trick" that makes it possible.

Direct measurements consists of two types of measurements performed one after the other, first a "weak" measurement followed by a "strong" measurement. In quantum mechanics the act of measuring a quantum state disturbs it irreversibly, a phenomenon referred to as collapse of the wavefunction. The trick lies with the first measurement being so gentle that it only slightly disturbs the system and does not cause the wavefunction to collapse.

"It is sort of like peeking into the box to see if Schrodinger's cat is alive, without fully opening the box," said lead author Dr. Mehul Malik, currently a post-doctoral research fellow at the University of Vienna and who was a Ph.D. in Boyd's group when the work was performed. "The weak measurement is essentially a bad measurement, which leaves you mostly uncertain about whether the cat is alive or dead. It does, however¬, give partial information on the health of the cat, which when repeated many times can lead to near certain information as to whether the cat is alive or dead." Malik adds that the beauty of the weak measurement is that it does not destroy the system, unlike most standard measurements of a quantum system, allowing a subsequent measurement—the "strong" measurement of the other variable.

This sequence of weak and strong measurements is then repeated for multiple identically prepared quantum systems, until the wave function is known with the required precision.

Ph.D. student Mohammad Mirhosseini was also part of the Rochester team. Other collaborators included Professor Miles Padgett and Martin Lavery from the University of Glasgow, UK, and Dr. Jonathan Leach, from Heriot-Watt University, Edinburgh, UK.

About the University of Rochester

The University of Rochester is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, School of Medicine and Dentistry, School of Nursing, Eastman Institute for Oral Health, and the Memorial Art Gallery.

Leonor Sierra | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht Interstellar seeds could create oases of life
28.08.2015 | Harvard-Smithsonian Center for Astrophysics

nachricht Draw out of the predicted interatomic force
28.08.2015 | Hiroshima University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>