Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the path to metallic hydrogen

05.08.2009
APS Physics this Week: Hydrogen under pressure

Hydrogen, the most common element in the universe, is normally an insulating gas, but at high pressures it may turn into a superconductor.

Now, scientists at the Carnegie Institution in Washington D.C., US, have discovered a hydrogen-based compound that could be helpful in the search for metallic and superconducting forms of hydrogen.

The results are reported in Physical Review Letters and highlighted in the August 3rd issue of APS's on-line journal Physics (physics.aps.org).

Hydrogen is the simplest of the elements: it contains one proton and one neutron. Because hydrogen is so light, quantum theory says that it will have a significant energy even when it is cooled to very low temperatures. This is why hydrogen only solidifies at just 14 degrees above absolute zero.

Scientists predicted that it should be possible to form a metal from hydrogen, but the pressure that would be required to do so – some 4 million atmospheres – exceeds that at the center of the earth. By forming compounds of hydrogen with another element like Si it is possible to make fairly dense forms of hydrogen that do become metals at more experimentally accessible pressures. In fact, SiH4 becomes a metal at about one tenth the pressure needed to make pure hydrogen metallic, and a superconductor at about 1 million atmospheres.

In their paper, Timothy Strobel, Maddury Somayazulu, and Russell Hemley present extensive high-pressure experiments on a mixture of SiH4 and H2. At pressures of only ~ 7.5 GPa, they discovered a new compound – SiH4(H2)2 – in which the hydrogen bonds are unusually weak and which may become a metal at higher pressures.

The ultimate goal of such studies is to generate conditions under which hydrogen effectively becomes metallic, and hopefully superconducting, at pressures lower than those required for pure solid hydrogen.

James Riordon | EurekAlert!
Further information:
http://www.aps.org

Further reports about: Hydrogen SiH4 SiH4(H2)2 Superconductor hydrogen bonds metallic hydrogen

More articles from Physics and Astronomy:

nachricht Exploring the mysteries of supercooled water
01.03.2017 | American Institute of Physics

nachricht Optical generation of ultrasound via photoacoustic effect
01.03.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>