Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particles that are their own worst enemies

17.01.2011
A newly proposed superconducting device could lead to the first observation of particles that are their own antiparticles

The matter that makes up the universe consists of particles such as electrons and protons, as well as their counterparts known as antiparticles. Particles and antiparticles that collide, however, annihilate each other in an intense flash of energy. Nevertheless, the Italian physicist Ettore Majorana proposed that some particles could exist that are their own antiparticles although physicists are yet to observe such particles.

Researchers from the RIKEN Advanced Science Institute in Wako have now proposed a scheme where Majorana particles could be not only observed for the first time but also manipulated[1]. The observation would occur in a conventional material rather than space. “Our main aim is to find a platform where the existence of Majorana fermions can be shown,” explains team member Shigeki Onoda. “And beyond that, we propose concrete steps towards the control of several Majorana particles.”

In some rare materials, energetic excitations that resemble Majorana particles are predicted to exist in materials. One class of these materials is known as topological insulators on the surface of which electrons can travel almost unperturbed. In topological insulators that are also superconducting, Majorana particles are predicted to exist in the presence of magnetic fields. These Majorana particles can be imagined as electronic excitations that run around the magnetic field lines.

The device proposed by Onoda and his colleagues offers deliberate control over Majorana particles within a topological insulator that they hope will make them accessible to experiments. Their device consists of a surface of a superconducting topological insulator attached to two magnetic sections (Fig. 1). The magnetic fields of the two magnets point in opposite directions. The researchers predict that, along the interface between the magnets, a periodic chain of magnetic field lines form in the superconducting topological insulator. Each of these magnetic field lines could accommodate a Majorana particle.

Once their existence is proved, Majorana particles could also enable extremely stable new forms of computing based on quantum physics, says Onoda. “As long as the Majorana particles are well separated, the information encoded in these states would be robust against local perturbations.”

For the time being, however, such quantum computing schemes must remain theoretical. Although widely expected to exist, superconducting topological insulators, as yet, exist only in theory. Once such a material has been found, the researchers believe that the proposed device structure will be straightforward to implement. The expected periodic arrangement of Majorana particles would then provide a convenient platform to study these elusive particles.

The corresponding author for this highlight is based at the Condensed Matter Theory Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Neupert, T., Onoda, S. & Furusaki, A. Chain of Majorana states from superconducting Dirac fermions at a magnetic domain wall. Physical Review Letters 105, 206404 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6493
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>