Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particles that are their own worst enemies

17.01.2011
A newly proposed superconducting device could lead to the first observation of particles that are their own antiparticles

The matter that makes up the universe consists of particles such as electrons and protons, as well as their counterparts known as antiparticles. Particles and antiparticles that collide, however, annihilate each other in an intense flash of energy. Nevertheless, the Italian physicist Ettore Majorana proposed that some particles could exist that are their own antiparticles although physicists are yet to observe such particles.

Researchers from the RIKEN Advanced Science Institute in Wako have now proposed a scheme where Majorana particles could be not only observed for the first time but also manipulated[1]. The observation would occur in a conventional material rather than space. “Our main aim is to find a platform where the existence of Majorana fermions can be shown,” explains team member Shigeki Onoda. “And beyond that, we propose concrete steps towards the control of several Majorana particles.”

In some rare materials, energetic excitations that resemble Majorana particles are predicted to exist in materials. One class of these materials is known as topological insulators on the surface of which electrons can travel almost unperturbed. In topological insulators that are also superconducting, Majorana particles are predicted to exist in the presence of magnetic fields. These Majorana particles can be imagined as electronic excitations that run around the magnetic field lines.

The device proposed by Onoda and his colleagues offers deliberate control over Majorana particles within a topological insulator that they hope will make them accessible to experiments. Their device consists of a surface of a superconducting topological insulator attached to two magnetic sections (Fig. 1). The magnetic fields of the two magnets point in opposite directions. The researchers predict that, along the interface between the magnets, a periodic chain of magnetic field lines form in the superconducting topological insulator. Each of these magnetic field lines could accommodate a Majorana particle.

Once their existence is proved, Majorana particles could also enable extremely stable new forms of computing based on quantum physics, says Onoda. “As long as the Majorana particles are well separated, the information encoded in these states would be robust against local perturbations.”

For the time being, however, such quantum computing schemes must remain theoretical. Although widely expected to exist, superconducting topological insulators, as yet, exist only in theory. Once such a material has been found, the researchers believe that the proposed device structure will be straightforward to implement. The expected periodic arrangement of Majorana particles would then provide a convenient platform to study these elusive particles.

The corresponding author for this highlight is based at the Condensed Matter Theory Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Neupert, T., Onoda, S. & Furusaki, A. Chain of Majorana states from superconducting Dirac fermions at a magnetic domain wall. Physical Review Letters 105, 206404 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6493
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>