Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particles that are their own worst enemies

17.01.2011
A newly proposed superconducting device could lead to the first observation of particles that are their own antiparticles

The matter that makes up the universe consists of particles such as electrons and protons, as well as their counterparts known as antiparticles. Particles and antiparticles that collide, however, annihilate each other in an intense flash of energy. Nevertheless, the Italian physicist Ettore Majorana proposed that some particles could exist that are their own antiparticles although physicists are yet to observe such particles.

Researchers from the RIKEN Advanced Science Institute in Wako have now proposed a scheme where Majorana particles could be not only observed for the first time but also manipulated[1]. The observation would occur in a conventional material rather than space. “Our main aim is to find a platform where the existence of Majorana fermions can be shown,” explains team member Shigeki Onoda. “And beyond that, we propose concrete steps towards the control of several Majorana particles.”

In some rare materials, energetic excitations that resemble Majorana particles are predicted to exist in materials. One class of these materials is known as topological insulators on the surface of which electrons can travel almost unperturbed. In topological insulators that are also superconducting, Majorana particles are predicted to exist in the presence of magnetic fields. These Majorana particles can be imagined as electronic excitations that run around the magnetic field lines.

The device proposed by Onoda and his colleagues offers deliberate control over Majorana particles within a topological insulator that they hope will make them accessible to experiments. Their device consists of a surface of a superconducting topological insulator attached to two magnetic sections (Fig. 1). The magnetic fields of the two magnets point in opposite directions. The researchers predict that, along the interface between the magnets, a periodic chain of magnetic field lines form in the superconducting topological insulator. Each of these magnetic field lines could accommodate a Majorana particle.

Once their existence is proved, Majorana particles could also enable extremely stable new forms of computing based on quantum physics, says Onoda. “As long as the Majorana particles are well separated, the information encoded in these states would be robust against local perturbations.”

For the time being, however, such quantum computing schemes must remain theoretical. Although widely expected to exist, superconducting topological insulators, as yet, exist only in theory. Once such a material has been found, the researchers believe that the proposed device structure will be straightforward to implement. The expected periodic arrangement of Majorana particles would then provide a convenient platform to study these elusive particles.

The corresponding author for this highlight is based at the Condensed Matter Theory Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Neupert, T., Onoda, S. & Furusaki, A. Chain of Majorana states from superconducting Dirac fermions at a magnetic domain wall. Physical Review Letters 105, 206404 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6493
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>