Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particles as tracers for the most massive explosions in the Milky Way

11.08.2009
Astronomers recently observed a mysterious flux of particles in the universe, and the hope was born that this may be the first observation of the remnants of "dark matter".

But scientists from the University of Gothenburg, Sweden, have shown that there is another explanation of the flux.

Several independent studies recently discovered a mysterious flux of electrons and positrons in the universe. Several theories were presented that suggested that these particles arise from the decay of "dark matter" - the hypothetical material that is believed to influence the rotation of galaxies.

Dark matter is one of the most challenging questions in astrophysics. An international research group with members from the University of Gothenburg has now published new results showing that the mysterious flux actually arises from exploding stars.

Supernova remnants
Julia Becker, from the Department of Physics at the University of Gothenburg, and her colleagues show in the article, which has been published in the scientific journal Physical Review Letters, that the mysterious particle flux is the remnant of a supernova, from a star that was 15 times more massive than the sun. This star died and exploded in the Milky Way.

When a star of this mass dies, most of its material is ejected and ploughs a pathway through a massive, stellar wind. This wind has been created earlier in the death process, when the star lost part of its original mass. The wind blows away from the star, and the final definitive explosion of the star then drives new material through the previously established wind.

A shock-wave in space
Electrons and positrons are accelerated during the process and create a shock-wave, similar to that formed when an aeroplane breaks the sound barrier. Julia Becker and her colleagues show that it is just such a shock-wave that has created the observed particle flux that has astounded scientists.

"This means, I'm afraid, that scientists will have to find another method of identifying dark matter", says Julia Becker.

The article Cosmic Ray Electrons and Positrons from Supernova Explosions of Massive Stars was published in Physical Review Letters on 7 August.

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.science.gu.se/english/News/News_detail/Particles_as_tracers_for_the_most_massive_explosions_in_the_Milky_Way.cid888354

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>