Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particles and Fields Package Integrated on Upcoming Mars-Bound Spacecraft

15.03.2013
The six science instruments that comprise the Particles and Fields Package that will characterize the solar wind and ionosphere of Mars have been integrated aboard NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. The spacecraft is on track for launch later this year.

The Solar Wind Electron Analyzer (SWEA) was the last of the six instruments to be delivered, and was integrated late last week at Lockheed Martin in Littleton, Colo. SWEA measures the properties of electrons at Mars, one electron at a time, and can process up to one million events per second.


NASA’s MAVEN spacecraft undergoes acoustics testing on Feb. 13, 2013 at Lockheed Martin Space Systems’ Reverberant Acoustic Laboratory. The environmental test simulates the maximum sound and vibration levels the spacecraft will experience during launch. MAVEN is the next mission to Mars and will be the first mission devoted to understanding the Martian upper atmosphere. Credit: Lockheed Martin

The other instruments in the package had been delivered earlier. In addition to the SWEA instrument, the package includes the Solar Wind Ion Analyzer (SWIA), Suprathermal and Thermal Ion Composition (STATIC), Solar Energetic Particle (SEP), Langmuir Probe and Waves (LPW), Magnetometer (MAG), and a data-processing unit.

"The Particles and Fields Package is designed to study the solar wind interaction with Mars and the structure and dynamics of Mars' ionosphere, including the influence of Mars' strongly magnetized crust," said David L. Mitchell, SWEA instrument lead and coordinator for the full package, from the University of California, Berkeley/Space Sciences Laboratory (SSL). "The package measures solar ultraviolet flux, solar wind properties, and energetic particles produced in solar storms to help us understand how the Sun influences the upper atmosphere and drives atmospheric escape."

The package was built by the University of California, Berkeley/Space Sciences Laboratory (SSL) with support from the University of Colorado Boulder/Laboratory for Atmospheric and Space Physics (CU/LASP) and NASA's Goddard Space Flight Center.

"The final components of the science payload are coming together, so we’re getting closer to being ready for launch," said Bruce Jakosky, MAVEN principal investigator from CU/LASP. "I look forward to the exciting and diverse science results that the Particles and Fields Package instruments will provide.”

The MAVEN spacecraft will carry two other instrument suites. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, provided by NASA Goddard, will measure the composition and isotopes of neutral ions.

“We’re in the home stretch now of completing the assembly and test of the spacecraft. With the full complement of Particles and Fields Package instruments now onboard the spacecraft, we are in a very good position for delivering the spacecraft to the launch site on schedule in August”, said David F. Mitchell, MAVEN project manager from NASA’s Goddard Space Flight Center in Greenbelt, Md.

MAVEN is scheduled for launch in November, 2013. It is the first spacecraft devoted to exploring and better understanding the Martian upper atmosphere. MAVEN will investigate the role that loss of Mars' atmosphere to space played in determining the history of water on the surface.

MAVEN’s principal investigator is based at the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics. The university provides science instruments and leads science operations, and Education and Public Outreach. NASA's Goddard Space Flight Center manages the project and provides two of the science instruments for the mission. Lockheed Martin of Littleton, Colo., built the spacecraft and is responsible for mission operations. The University of California at Berkeley Space Sciences Laboratory provides science instruments for the mission. NASA’s Jet Propulsion Laboratory, Pasadena, Calif., provides navigation support, the Deep Space Network, and the Electra telecommunications relay hardware and operations. Goddard Release: 13-014

Nancy Neal Jones
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-286-0039
Nancy.N.Jones@nasa.gov

Nancy Neal Jones | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/maven/news/pfp-integrated.html

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>