Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particle physicists from Mainz University participate in JUNO neutrino experiment

28.01.2015

Project designed to undertake precise measurement of neutrino oscillation should provide insight into neutrino mass hierarchy

The construction of the facilities for the JUNO neutrino experiment has been initiated with an official groundbreaking ceremony near the south Chinese city of Jiangmen. Involved in the Jiangmen Underground Neutrino Observatory (JUNO) will be more than fifty institutions from China, the US and Europe - with six from Germany alone. Starting in 2020, JUNO will begin to produce new information about the particle characteristics of the neutrino.

"The aim of JUNO is to precisely measure the oscillations of neutrinos for the purpose of investigating one of the major issues in neutrino physics today - the sequence or hierarchy of neutrino masses," explains Prof. Michael Wurm of the Institute of Physics at Johannes Gutenberg University Mainz (JGU). He is acting as one of the German JUNO partners and was at the site to watch the start of work on the underground lab.

Neutrinos are elementary particles that have next to no mass and that are emitted by processes such as fusion in the sun and radioactive decays of fission products in nuclear reactors. They have no electric charge and are subject only to the weak nuclear force. This means that they can penetrate matter almost unhindered and can only be captured using massive detectors that are usually located underground.

There are three different types of neutrinos – electron, muon, and tau neutrinos. They can change from one type to another, a phenomenon known as neutrino oscillation. It is possible to determine the mass of the particles by studying the oscillation patterns.

"Oscillations only occur because neutrinos have three different masses. But which is the lightest of the three and which is the heaviest? The JUNO experiment will be sensitive enough to allow us to clearly sequence the three neutrino types," said Wurm.

The particle physicist, who is also participating in the Borexino experiment that investigates solar neutrinos and is located under Italy's Gran Sasso mountain, sees this as an important step forward for the experimental efforts to find a violation of matter/antimatter symmetry in neutrino oscillations. Scientists hope to find out why matter and antimatter did not completely annihilate one another after the Big Bang.

It will only be possible to determine the sequence of neutrino masses through tiny changes in the oscillation patterns that cannot be detected by currently running experiments. The JUNO detector is thus being built in its own underground lab, which is located some 50 kilometers from two reactor complexes on China’s southern coast.

The neutrinos emitted by the reactors will be registered in the form of small light flashes in the liquid scintillator target located at the center of the detector. Carefully shielded from radiation background, 20,000 tons of the mineral oil-like target liquid will be contained in an acrylic sphere of 35 meter diameters. Its outer surface will be equipped by a dense array of light sensors detecting the scintillation light.

Six years of construction are foreseen for the new detector that will be 100 times larger than the Borexino experiment. Upon start of data taking in 2021, the scientists expect that another five years of measurement will be necessary to answer the question of neutrino mass hierarchy.

Images:
http://www.uni-mainz.de/bilder_presse/08_physik_etap_juno_spatenstich_eng_01.jpg
Schematic depiction of the JUNO detector showing the shielded acrylic sphere (lower right). The detector is surrounded by a pool of water to protect it against background radiation (upper left).
source/©: Michael Wurm

http://www.uni-mainz.de/bilder_presse/08_physik_etap_juno_spatenstich_02.jpg
JUNO Civil Construction Kick-off Meeting on 10 January 2015 near Jiangmen in China
photo/©: INFN – Istituto Nazionale di Fisica Nucleare

http://www.uni-mainz.de/bilder_presse/08_physik_etap_juno_spatenstich_03.jpg
Access road to the planned underground neutrino observatory
photo/©: INFN – Istituto Nazionale di Fisica Nucleare

Further information:
Professor Dr. Michael Wurm
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone: +49 6131 39-23928
fax: +49 6131 39-25169
e-mail: michael.wurm@uni-mainz.de
http://www.etap.physik.uni-mainz.de/index_ENG.php

Related links:
http://www.uni-mainz.de/presse/17555_ENG_HTML.php -- press release “Detection of pp-neutrinos provides first direct measurement of solar power at its production“, 28 Aug. 2014

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>