Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paper offers breakthrough on blinking molecules phenomenon

12.08.2010
A new paper by University of Notre Dame physicist Boldizsár Jankó and colleagues offers an important new understanding of an enduring mystery in chemical physics.

More than a century ago, at the dawn of modern quantum mechanics, the Noble Prize-winning physicist Neils Bohr predicted so-called "quantum jumps." He predicted that these jumps would be due to electrons making transitions between discrete energy levels of individual atoms and molecules.

Although controversial in Bohr's time, such quantum jumps were experimentally observed, and his prediction verified, in the 1980s. More recently, with the development of single molecule imaging techniques in the early 1990s, it has been possible to observe similar jumps in individual molecules.

Experimentally, these quantum jumps translate to discrete interruptions of the continuous emission from single molecules, revealing a phenomenon known as fluorescent intermittency or "blinking."

However, while certain instances of blinking can be directly ascribed to Bohr's original quantum jumps, many more cases exist where the observed fluorescence intermittency does not follow his predictions. Specifically, in systems as diverse as fluorescent proteins, single molecules and light harvesting complexes, single organic fluorophores, and, most recently, individual inorganic nanostructures, clear deviations from Bohr's predictions occur.

As a consequence, virtually all known fluorophores, including fluorescent quantum dots, rods and wires, exhibit unexplainable episodes of intermittent blinking in their emission.

The prevailing wisdom in the field of quantum mechanics was that the on and off blinking episodes were not correlated. However, at a 2007 conference on the phenomenon sponsored by Notre Dame's Institute for Theoretical Sciences, which Jankó directs, Fernando Stefani of the University of Buenos Aires presented research suggesting that there was, in fact, correlation between these on and off events. No theoretical model available at that time was able to explain these correlations.

In a 2008 Nature Physics paper, Jankó and a group of researchers that included Notre Dame chemistry professor Ken Kuno, physics visiting assistant professor Pavel Frantsuzov and Nobel Laureate Rudolph Marcus suggested that the on- and off-time intervals of intermittent nanocrystal quantum dots follow universal power law distributions. The discovery provided Jankó and other researchers in the field with the first hints for developing a deeper insight into the physical mechanism behind the vast range of on- and off-times in the intermittency.

In a new paper appearing in the journal Nano Letters, Jankó, Frantsuzov and Notre Dame graduate student Sándor Volkán-Kascó reveal that they have developed a model for the blinking phenomena that confirms what Stefani observed experimentally. The finding is important confirmation that strong correlation exists between the on and off phenomenon.

If the blinking process could be controlled, quantum dots could, for example, provide better, more stable imaging of cancer cells; provide researcher with real-time images of a viral infection, such as HIV, within a cell; lead to the development of a new generation of brighter display screens for computers, cell phones and other electronic applications; and even improved lighting fixtures for homes and offices.

The Nano Letters paper represents another important step in understanding the origins of the blinking phenomenon and identifying ways to control the process.

Boldizsar Janko | EurekAlert!
Further information:
http://www.nd.edu

Further reports about: Nano blinking cell phone quantum dot quantum mechanics single molecule

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>