Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pan-STARRS Finds a "Lost" Supernova

08.03.2013
The star Eta Carinae is ready to blow. 170 years ago, this 100-solar-mass object belched out several suns' worth of gas in an eruption that made it the second-brightest star after Sirius. That was just a precursor to the main event, since it will eventually go supernova.
Supernova explosions of massive stars are common in spiral galaxies like the Milky Way, where new stars are forming all the time. They are almost never seen in elliptical galaxies where star formation has nearly ceased. As a result, astronomers were surprised to find a young-looking supernova in an old galaxy. Supernova PS1-12sk, discovered with the Pan-STARRS telescope on Haleakala, is rare in more ways than one.

"This supernova is one-of-a-kind," said Nathan Sanders of the Harvard-Smithsonian Center for Astrophysics (CfA), lead author of the discovery paper. "And it's definitely in the wrong neighborhood."

Based on the presence of helium and other features, PS1-12sk is classified as a very rare Type Ibn supernova - only the sixth such example found out of thousands of supernovae. Although the origin of this supernova type is unclear, the most likely cause seems to be the explosion of a massive star that previously ejected massive amounts of helium gas, much like Eta Carinae's Homunculus Nebula.

That origin was supported by the fact that the five previous Type Ibn supernovae were all found in galaxies like the Milky Way that are actively forming stars. (Since massive stars don't live long, they don't stray far from where they are born before exploding.)

PS1-12sk is different. It was found on the outskirts of a bright elliptical galaxy located about 780 million light-years from Earth. The site of the explosion shows no signs of recent star formation, and a supernova from a massive star has never before been seen in a galaxy of this type.

"It could be that we simply got very lucky with this discovery. But luck favors the prepared," said second author Alicia Soderberg of the CfA.

The finding suggests that the host galaxy might be hiding a star factory, allowing it to form massive stars where none were expected. Alternatively, PS1-12sk might have an entirely different origin such as a collision of two white dwarfs, one of which was helium-rich.

"Is this a runaway star from another star formation site? Is it a very local bit of star formation? Is it a different way for such a supernova to occur? None of these seems very likely so we have a real puzzle," said co-author John Tonry (University of Hawaii Institute for Astronomy).

The research has been submitted for publication in The Astrophysical Journal.
Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu
http://www.cfa.harvard.edu/news/2013/pr201308.html

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>