Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Packing Hundreds of Sensors into a Single Optical Fiber for use in Harsh Environments

27.06.2014

New technology for gas flow measurement sets temperature record of 800 degrees Celsius -- ideal for use in deep drilling operations, nuclear reactor cores and outer space

By fusing together the concepts of active fiber sensors and high-temperature fiber sensors, a team of researchers at the University of Pittsburgh has created an all-optical high-temperature sensor for gas flow measurements that operates at record-setting temperatures above 800 degrees Celsius.


An artist's rendering of the fiber optic flow sensor. The glowing red sections along the optical fiber are the sensors--hundreds of these sensors can be packed into a single fiber. Image credit: Kevin Chen, University of Pittsburgh.

This technology is expected to find industrial sensing applications in harsh environments ranging from deep geothermal drill cores to the interiors of nuclear reactors to the cold vacuum of space missions, and it may eventually be extended to many others.

The team describes their all-optical approach in a paper published today in The Optical Society’s (OSA) journal Optics Letters. They successfully demonstrated simultaneous flow/temperature sensors at 850 C, which is a 200 C improvement on an earlier notable demonstration of MEMS-based sensors by researchers at Oak Ridge National Laboratory.

The basic concept of the new approach involves integrating optical heating elements, optical sensors, an energy delivery cable and a signal cable within a single optical fiber. Optical power delivered by the fiber is used to supply energy to the heating element, while the optical sensor within the same fiber measures the heat transfer from the heating element and transmits it back.

“We call it a 'smart optical fiber sensor powered by in-fiber light',” said Kevin P. Chen, an associate professor and the Paul E. Lego Faculty Fellow in the University of Pittsburg’s Department of Electrical and Computer Engineering.

The team’s work expands the use of fiber-optic sensors well beyond traditional applications of temperature and strain measurements. “Tapping into the energy carried by the optical fiber enables fiber sensors capable of performing much more sophisticated and multifunctional types of measurements that previously were only achievable using electronic sensors,” Chen said.

In microgravity situations, for example, it’s difficult to measure the level of liquid hydrogen fuel in tanks because it doesn’t settle at the bottom of the tank. It’s a challenge that requires the use of many electronic sensors—a problem Chen initially noticed years ago while visiting NASA, which was the original inspiration to develop a more streamlined and efficient approach.

“For this type of microgravity situation, each sensor requires wires, a.k.a. ‘leads,’ to deliver a sensing signal, along with a shared ground wire,” explained Chen. “So it means that many leads—often more than 40—are necessary to get measurements from the numerous sensors. I couldn’t help thinking there must be a better way to do it.”

It turned out, there is. The team looked to optical-fiber sensors, which are one of the best sensor technologies for use in harsh environments thanks to their extraordinary multiplexing capabilities and immunity to electromagnetic interference. And they were able to pack many of these sensors into a single fiber to reduce or eliminate the wiring problems associated with having numerous leads involved.

“Another big challenge we addressed was how to achieve active measurements in fiber,” Chen said. “If you study optical fiber, it’s a cable for signal transmission but one that can also be used for energy delivery—the same optical fiber can deliver both signal and optical power for active measurements. It drastically improves the sensitivity, functionality, and agility of fiber sensors without compromising the intrinsic advantages of fiber-optic sensors. That’s the essence of our work.”

Based on the same technology, highly sensitive chemical sensors can also be developed for cryogenic environments. “The optical energy in-fiber can be tapped to locally heated in-fiber chemical sensors to enhance its sensitivity,” Chen said. “In-fiber optical power can also be converted into ultrasonic energy, microwave or other interesting applications because tens or hundreds of smart sensors can be multiplexed within a single fiber. It just requires placing one fiber in the gas flow stream—even in locations with strong magnetic interference.”

Next, the team plans to explore common engineering devices that are often taken for granted and search for ways to enhance them. “For fiber sensors, we typically view the fiber as a signal-carrying cable. But if you look at it from a fiber sensor perspective, does it really need to be round or a specific size? Is it possible that another size or shape might better suit particular applications? As a superior optical cable, is it also possible to carry other types of energy along the fibers for long-distance and remote sensing?” Chen noted. “These are questions we’ll address.”
 
Paper: “Fiber-optic flow sensors for high-temperature-environment operation up to 800°C,” R. Chen at al., Optics Letters, Vol. 39, Issue 13, pp. 3966-3969 (2014).
 
EDITOR’S NOTE: An artist’s rendering of the sensor is available to members of the media upon request. Contact Angela Stark, astark@osa.org.
 
About Optics Letters
Published by The Optical Society (OSA), Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. This journal, edited by Xi-Cheng Zhang of the University of Rochester and published twice each month, is where readers look for the latest discoveries in optics. Visit www.OpticsInfoBase.org/OL.
 
About OSA
Founded in 1916, The Optical Society (OSA) is the leading professional society for scientists, engineers, students and business leaders who fuel discoveries, shape real-world applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership programs, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of professionals in optics and photonics. For more information, visit www.osa.org.

Angela Stark | Eurek Alert!
Further information:
http://www.osa.org/en-us/about_osa/newsroom/news_releases/2014/packing_hundreds_of_sensors_into_a_single_optical/

Further reports about: OSA Packing Sensors environments fiber heating measurements optics sensing temperature

More articles from Physics and Astronomy:

nachricht Suzaku, Herschel link a black-hole 'wind' to a galactic gush of star-forming gas
26.03.2015 | NASA/Goddard Space Flight Center

nachricht Tiny Bio-Robot Is a Germ Suited-Up with Graphene Quantum Dots
25.03.2015 | University of Illinois at Chicago

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Surface-modified nanoparticles endow coatings with combined properties

26.03.2015 | Trade Fair News

Novel sensor system provides continuous smart monitoring of machinery and plant equipment

26.03.2015 | Trade Fair News

Common bacteria on verge of becoming antibiotic-resistant superbugs

26.03.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>