Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen molecule survives to enormously high pressures: RUB publication in Physical Review Letters

30.01.2012
RUB researcher calculates stability thresholds and structures of solid oxygen / Physical Review Letters: Oxygen as insulator, semiconductor, and metal

Using computer simulations, a RUB researcher has shown that the oxygen molecule (O2) is stable up to pressures of 1.9 terapascal, which is about nineteen million times higher than atmosphere pressure. Above that, it polymerizes, i.e. builds larger molecules or structures.


Structures of solid oxygen under high pressure: At 1.9 TPa, oxygen polymerizes and assumes a square spiral-like structure, which is semi-conducting (top). With increasing pressure, the polymer exhibits metallic properties (zig-zag chain-like phase, mid). Then, the structure changes into a metallic layer phase (bottom). The coloured areas represent the charge density in one layer of the structure. Figure: Jian Sun

“This is very surprising” says Dr. Jian Sun from the Department of Theoretical Chemistry. “Other simple molecules like nitrogen or hydrogen do not survive such high pressures.” In cooperation with colleagues from University College London, the University of Cambridge, and the National Research Council of Canada, the researcher also reports that the behaviour of oxygen with increasing pressure is very complicated. It's electrical conductivity first increases, then decreases, and finally increases again. The results are published in Physical Review Letters.

Weaker bonds, greater stability

The oxygen atoms in the O2 molecule are held together by a double covalent bond. Nitrogen (N2), on the other hand, possesses a triple bond. “You would think that the weaker double bond is easier to break than the triple bond and that oxygen would therefore polymerize at lower pressures than nitrogen” says Sun. “We found the opposite, which is astonishing at first sight.”

Coming together when pressure increases

However, in the condensed phase when pressure increases, the molecules become closer to each other. The research team suggests that, under these conditions, the electron lone pairs on different molecules repel one another strongly, thus hindering the molecules from approaching each other. Since oxygen has more lone pairs than nitrogen, the repulsive force between these molecules is stronger, which makes polymerization more difficult. However, the number of lone pairs cannot be the only determinant of the polymerization pressure. “We believe that it is a combination of the number of lone pairs and the strength of the bonds between the atoms”, says Sun.

The many structures of oxygen

At high pressures, gaseous molecules such as hydrogen, carbon monoxide, or nitrogen polymerize into chains, layers, or framework structures. At the same time they usually change from insulators to metals, i.e. they become more conductive with increasing pressure. The research team, however, showed that things are more complicated with oxygen. Under standard conditions, the molecule has insulating properties. If the pressure increases, oxygen metallises and becomes a superconductor. With further pressure increase, its structure changes into a polymer and it becomes semi-conducting. If the pressure rises even more, oxygen once more assumes metallic properties, meaning that the conductivity goes up again. The metallic polymer structure finally changes into a metallic layered structure.

Inside planets

“The polymerization of small molecules under high pressure has attracted much attention because it helps to understand the fundamental physics and chemistry of geological and planetary processes” explains Sun. “For instance, the pressure at the centre of Jupiter is estimated to be about seven terapascal. It was also found that polymerized molecules, like N2 and CO2, have intriguing properties, such as high energy densities and super-hardness.” Dr. Jian Sun joined the RUB-research group of Prof. Dr. Dominik Marx as a Humboldt Research Fellow in 2008 to work on vibrational spectroscopy of aqueous solutions. In parallel to this joint work in "Solvation Science" he developed independent research interests into high pressure chemical physics as an Early Career Researcher.

Bibliographic record

J. Sun, M. Martinez-Canales, D.D. Klug, C.J. Pickard, R.J. Needs (2012): Persistence and eventual demise of oxygen molecules at terapascal pressures, Physical Review Letters, doi: 10.1103/PhysRevLett.108.045503

Further information

Dr. Jian Sun, Department of Theoretical Chemistry, Faculty of Chemistry and Biochemistry at the Ruhr-Universität, 44780 Bochum, Tel.: +49/234/32-22121
jian.sun@theochem.rub.de

Click for more

Department of Theoretical Chemistry
http://www.theochem.rub.de/home.en.html

Editorial journalist
Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.theochem.rub.de/home.en.html
http://www.ruhr-uni-bochum.de

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>