Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen molecule survives to enormously high pressures: RUB publication in Physical Review Letters

30.01.2012
RUB researcher calculates stability thresholds and structures of solid oxygen / Physical Review Letters: Oxygen as insulator, semiconductor, and metal

Using computer simulations, a RUB researcher has shown that the oxygen molecule (O2) is stable up to pressures of 1.9 terapascal, which is about nineteen million times higher than atmosphere pressure. Above that, it polymerizes, i.e. builds larger molecules or structures.


Structures of solid oxygen under high pressure: At 1.9 TPa, oxygen polymerizes and assumes a square spiral-like structure, which is semi-conducting (top). With increasing pressure, the polymer exhibits metallic properties (zig-zag chain-like phase, mid). Then, the structure changes into a metallic layer phase (bottom). The coloured areas represent the charge density in one layer of the structure. Figure: Jian Sun

“This is very surprising” says Dr. Jian Sun from the Department of Theoretical Chemistry. “Other simple molecules like nitrogen or hydrogen do not survive such high pressures.” In cooperation with colleagues from University College London, the University of Cambridge, and the National Research Council of Canada, the researcher also reports that the behaviour of oxygen with increasing pressure is very complicated. It's electrical conductivity first increases, then decreases, and finally increases again. The results are published in Physical Review Letters.

Weaker bonds, greater stability

The oxygen atoms in the O2 molecule are held together by a double covalent bond. Nitrogen (N2), on the other hand, possesses a triple bond. “You would think that the weaker double bond is easier to break than the triple bond and that oxygen would therefore polymerize at lower pressures than nitrogen” says Sun. “We found the opposite, which is astonishing at first sight.”

Coming together when pressure increases

However, in the condensed phase when pressure increases, the molecules become closer to each other. The research team suggests that, under these conditions, the electron lone pairs on different molecules repel one another strongly, thus hindering the molecules from approaching each other. Since oxygen has more lone pairs than nitrogen, the repulsive force between these molecules is stronger, which makes polymerization more difficult. However, the number of lone pairs cannot be the only determinant of the polymerization pressure. “We believe that it is a combination of the number of lone pairs and the strength of the bonds between the atoms”, says Sun.

The many structures of oxygen

At high pressures, gaseous molecules such as hydrogen, carbon monoxide, or nitrogen polymerize into chains, layers, or framework structures. At the same time they usually change from insulators to metals, i.e. they become more conductive with increasing pressure. The research team, however, showed that things are more complicated with oxygen. Under standard conditions, the molecule has insulating properties. If the pressure increases, oxygen metallises and becomes a superconductor. With further pressure increase, its structure changes into a polymer and it becomes semi-conducting. If the pressure rises even more, oxygen once more assumes metallic properties, meaning that the conductivity goes up again. The metallic polymer structure finally changes into a metallic layered structure.

Inside planets

“The polymerization of small molecules under high pressure has attracted much attention because it helps to understand the fundamental physics and chemistry of geological and planetary processes” explains Sun. “For instance, the pressure at the centre of Jupiter is estimated to be about seven terapascal. It was also found that polymerized molecules, like N2 and CO2, have intriguing properties, such as high energy densities and super-hardness.” Dr. Jian Sun joined the RUB-research group of Prof. Dr. Dominik Marx as a Humboldt Research Fellow in 2008 to work on vibrational spectroscopy of aqueous solutions. In parallel to this joint work in "Solvation Science" he developed independent research interests into high pressure chemical physics as an Early Career Researcher.

Bibliographic record

J. Sun, M. Martinez-Canales, D.D. Klug, C.J. Pickard, R.J. Needs (2012): Persistence and eventual demise of oxygen molecules at terapascal pressures, Physical Review Letters, doi: 10.1103/PhysRevLett.108.045503

Further information

Dr. Jian Sun, Department of Theoretical Chemistry, Faculty of Chemistry and Biochemistry at the Ruhr-Universität, 44780 Bochum, Tel.: +49/234/32-22121
jian.sun@theochem.rub.de

Click for more

Department of Theoretical Chemistry
http://www.theochem.rub.de/home.en.html

Editorial journalist
Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.theochem.rub.de/home.en.html
http://www.ruhr-uni-bochum.de

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

Icebergs: Mathematical model calculates the collapse of shelf ice

24.08.2017 | Earth Sciences

Improved monitoring of coral reefs with the HyperDiver

24.08.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>