Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Oxygen molecule survives to enormously high pressures: RUB publication in Physical Review Letters

RUB researcher calculates stability thresholds and structures of solid oxygen / Physical Review Letters: Oxygen as insulator, semiconductor, and metal

Using computer simulations, a RUB researcher has shown that the oxygen molecule (O2) is stable up to pressures of 1.9 terapascal, which is about nineteen million times higher than atmosphere pressure. Above that, it polymerizes, i.e. builds larger molecules or structures.

Structures of solid oxygen under high pressure: At 1.9 TPa, oxygen polymerizes and assumes a square spiral-like structure, which is semi-conducting (top). With increasing pressure, the polymer exhibits metallic properties (zig-zag chain-like phase, mid). Then, the structure changes into a metallic layer phase (bottom). The coloured areas represent the charge density in one layer of the structure. Figure: Jian Sun

“This is very surprising” says Dr. Jian Sun from the Department of Theoretical Chemistry. “Other simple molecules like nitrogen or hydrogen do not survive such high pressures.” In cooperation with colleagues from University College London, the University of Cambridge, and the National Research Council of Canada, the researcher also reports that the behaviour of oxygen with increasing pressure is very complicated. It's electrical conductivity first increases, then decreases, and finally increases again. The results are published in Physical Review Letters.

Weaker bonds, greater stability

The oxygen atoms in the O2 molecule are held together by a double covalent bond. Nitrogen (N2), on the other hand, possesses a triple bond. “You would think that the weaker double bond is easier to break than the triple bond and that oxygen would therefore polymerize at lower pressures than nitrogen” says Sun. “We found the opposite, which is astonishing at first sight.”

Coming together when pressure increases

However, in the condensed phase when pressure increases, the molecules become closer to each other. The research team suggests that, under these conditions, the electron lone pairs on different molecules repel one another strongly, thus hindering the molecules from approaching each other. Since oxygen has more lone pairs than nitrogen, the repulsive force between these molecules is stronger, which makes polymerization more difficult. However, the number of lone pairs cannot be the only determinant of the polymerization pressure. “We believe that it is a combination of the number of lone pairs and the strength of the bonds between the atoms”, says Sun.

The many structures of oxygen

At high pressures, gaseous molecules such as hydrogen, carbon monoxide, or nitrogen polymerize into chains, layers, or framework structures. At the same time they usually change from insulators to metals, i.e. they become more conductive with increasing pressure. The research team, however, showed that things are more complicated with oxygen. Under standard conditions, the molecule has insulating properties. If the pressure increases, oxygen metallises and becomes a superconductor. With further pressure increase, its structure changes into a polymer and it becomes semi-conducting. If the pressure rises even more, oxygen once more assumes metallic properties, meaning that the conductivity goes up again. The metallic polymer structure finally changes into a metallic layered structure.

Inside planets

“The polymerization of small molecules under high pressure has attracted much attention because it helps to understand the fundamental physics and chemistry of geological and planetary processes” explains Sun. “For instance, the pressure at the centre of Jupiter is estimated to be about seven terapascal. It was also found that polymerized molecules, like N2 and CO2, have intriguing properties, such as high energy densities and super-hardness.” Dr. Jian Sun joined the RUB-research group of Prof. Dr. Dominik Marx as a Humboldt Research Fellow in 2008 to work on vibrational spectroscopy of aqueous solutions. In parallel to this joint work in "Solvation Science" he developed independent research interests into high pressure chemical physics as an Early Career Researcher.

Bibliographic record

J. Sun, M. Martinez-Canales, D.D. Klug, C.J. Pickard, R.J. Needs (2012): Persistence and eventual demise of oxygen molecules at terapascal pressures, Physical Review Letters, doi: 10.1103/PhysRevLett.108.045503

Further information

Dr. Jian Sun, Department of Theoretical Chemistry, Faculty of Chemistry and Biochemistry at the Ruhr-Universität, 44780 Bochum, Tel.: +49/234/32-22121

Click for more

Department of Theoretical Chemistry

Editorial journalist
Dr. Julia Weiler

Dr. Josef König | idw
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>