Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen is not definitive evidence of life on habitable extrasolar planets

10.09.2015

The Earth's atmosphere contains oxygen because plants continuously produce it through photosynthesis. This abundant supply of oxygen allows life forms like animals to flourish. Therefore, oxygen had been thought to be an essential biomarker for life on extrasolar planets.

But now, a research assistant professor Norio Narita of the Astrobiology Center of National Institutes of Natural Sciences (NINS), which was founded in April 2015, and an associate professor Shigeyuki Masaoka, of the Institute of Molecular Science of NINS, have presented a novel hypothesis that it could be possible for planets to have large quantities of abiotic (non-biologically produced) oxygen.


Abiotic oxygen can be produced from water in the presence of titanium oxide and an electron acceptor under UV light. Our report suggests that this photocatalytic reaction can supply significant amount of abiotic oxygen on habitable extrasolar planets.

Credit: National Institutes of Natural Sciences (NINS)

This study is a good example of interdisciplinary studies that combine knowledge from different fields of science to promote astrobiology in the search for life on extrasolar planets. The study is published in Scientific Reports on Sep 10, 2015.

Until now, it had been thought that if a planet has oxygen, that must mean that some form of plants are producing it through photosynthesis. Therefore, it had been assumed that when searching for signs of life on habitable extrasolar planets, the presence of oxygen in the atmosphere could be considered a definitive biomarker.

However, non-biological chemical reactions can also affect atmospheric compositions of extrasolar planets. Now, the research team led by Dr. Narita has shown that, abiotic oxygen produced by the photocatalytic reaction of titanium oxide, which is known to be abundant on the surfaces of terrestrial planets, meteorolites, and the Moon in the Solar System, cannot be discounted.

For a planet with an environment similar to the Sun-Earth system, continuous photocatalytic reaction of titanium oxide on about 0.05 % of the planetary surface could produce the amount of oxygen found in the current Earth's atmosphere. In addition, the team estimated the amount of possible oxygen production for habitable planets around other types of host stars with various masses and temperatures.

They found that even in the least efficient production case of a low-temperature star, the photocatalytic reaction of the titanium oxide on about 3% of the planetary surface could maintain this level of atmospheric oxygen through abiotic processes. In other words, it is possible that a habitable extrasolar planet could maintain an atmosphere with Earth-like oxygen, even without organisms to perform photosynthesis.

Dr. Narita said, "To search for life on extrasolar planets through astronomical observation, we need to combine the knowledge from various scientific fields and to promote astrobiology researches to establish the decisive signs of life. Although oxygen is still one of possible biomarkers, it becomes necessary to look for new biomarkers besides oxygen from the present result."

###

Article:

Title: Titania may produce abiotic oxygen atmospheres on habitable exoplanets
Authors: Norio Narita1,2,3, Takafumi Enomoto3,4, Shigeyuki Masaoka3,4, Nobuhiko Kusakabe2
Affiliation: 1. Astrobiology Center, 2: National Astronomical Observatory of Japan, 3: SOKENDAI (The Graduate University for Advanced Studies), 4:Institute for Molecular Science
Scientific Reports, 2015 Sep 10

Contact Information:

Science Contact:
Astrobiology Center, National Institutes of Natural Sciences
Research Assistant Professor
Dr. Norio Narita
E-mail: norio.narita@nao.ac.jp
Tel: +81-422-34-3543,

PR Contact:
National Institutes of Natural Sciences
E-mail a.koizumi@nins.jp (Dr. Amane Koizumi)
nins-kikakurenkei@nins.jp
TEL: +81-3-5425-1898 FAX +81-3-5425-2049

National Astronomical Observatory of Japan
Chief Public Information Officer,
Dr. Masaaki Hiramatsu
Email: hiramatsu.masaaki@nao.ac.jp

Public Relations, Institute for Molecular Science, Natural Institutes of Natural Sciences
E-mail: kouhou@ims.ac.jp
TEL/FAX?+81-564-55-7262

Media Contact

Dr. Norio Narita
norio.narita@nao.ac.jp
81-422-343-543

http://www.nins.jp/english/ 

Dr. Norio Narita | EurekAlert!

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>