Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out of An Hours-long Explosion, A Stand-In For The First Stars

14.07.2014

Astronomers analyzing a long-lasting blast of high-energy light observed in 2013 report finding features strikingly similar to those expected from an explosion from the universe's earliest stars. If this interpretation is correct, the outburst validates ideas about a recently identified class of gamma-ray burst and serves as a stand-in for what future observatories may see as the last acts of the first stars.

"One of the great challenges of modern astrophysics has been the quest to identify the first generation of stars to form in the universe, which we refer to as Population III stars," explained lead scientist Luigi Piro, the director of research at the Institute for Space Astrophysics and Planetology in Rome, a division of Italy's National Institute for Astrophysics (INAF). "This important event takes us one step closer."


In this artist's rendering of GRB 130925A, a sheath of hot, X-ray-emitting gas (red) surrounds a particle jet (white) blasting through the star's surface at nearly the speed of light. The source may have been a metal-poor blue supergiant, an important proxy for the universe's first stars.

Image Credit: NASA/Swift/A. Simonnet, Sonoma State Univ.

Gamma-ray bursts (GRBs) are the most luminous explosions in the universe. The blasts emit outbursts of gamma rays -- the most powerful form of light -- and X-rays, and produce rapidly fading afterglows that can be observed in visible light, infrared and radio wavelengths. On average, NASA's Swift satellite, Fermi Gamma-ray Space Telescope and other spacecraft detect about one GRB each day.

Shortly after 12:11 a.m. EDT on Sept. 25, 2013, Swift's Burst Alert Telescope triggered on a spike of gamma rays from a source in the constellation Fornax. The spacecraft automatically alerted observatories around the world that a new burst -- designated GRB 130925A, after the date -- was in progress and turned its X-ray Telescope (XRT) toward the source. Other satellites also detected the rising tide of high-energy radiation, including Fermi, the Russian Konus instrument onboard NASA's Wind spacecraft, and the European Space Agency's (ESA) INTEGRAL observatory.

The burst was eventually localized to a galaxy so far away that its light had been traveling for 3.9 billion years, longer than the oldest evidence for life on Earth.

Astronomers have observed thousands of GRBs over the past five decades. Until recently, they were classified into two groups, short and long, based on the duration of the gamma-ray signal. Short bursts, lasting only two seconds or less, are thought to represent a merger of compact objects in a binary system, with the most likely suspects being neutron stars and black holes. Long GRBs may last anywhere from several seconds to several minutes, with typical durations between 20 and 50 seconds. These events are thought to be associated with the collapse of a star many times the sun's mass and the resulting birth of a new black hole.

GRB 130925A, by contrast, produced gamma rays for 1.9 hours, more than a hundred times greater than a typical long GRB. Observations by Swift's XRT revealed an intense and highly variable X-ray afterglow that exhibited strong flares for six hours, after which it finally began the steady fadeout usually seen in long GRBs.

"GRB 130925A is a member of a rare and newly recognized class we call ultra-long bursts," said Eleonora Troja, a visiting research scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and a member of the study team. "But what really sets it apart is its unusual X-ray afterglow, which provides the strongest case yet that ultra-long GRBs come from stars called blue supergiants."

Astronomers think Wolf-Rayet stars best explain the origin of long GRBs. Born with more than 25 times the sun's mass, these stars burn so hot that they drive away their outer hydrogen envelopes through an outflow called a stellar wind. By the time it collapses, the star's outer atmosphere is essentially gone and its physical size is comparable to the sun's. A black hole forms in the star's core and matter falling toward it powers jets that burrow through the star. The jets continue operating for a few tens of seconds -- the time scale of long GRBs.

Because ultra-long GRBs last hundreds of times longer, the source star must have a correspondingly greater physical size. The most likely suspect, astronomers say, is a blue supergiant, a hot star with about 20 times the sun's mass that retains its deep hydrogen atmosphere, making it roughly 100 times the sun's diameter. Better yet, blue supergiants containing only a very small fraction of elements heavier than helium -- metals, in astronomical parlance -- could be substantially larger. A star's metal content controls the strength of its stellar wind, and this in turn determines how much of its hydrogen atmosphere it retains before collapse. For the largest blue supergiants, the hydrogen envelope would take hours to fall into the black hole, providing a sustained fuel source to power ultra-long GRBs.

Writing in the July 10 edition of The Astrophysical Journal Letters, the researchers note that radio observations of the GRB afterglow show that it displayed nearly constant brightness over a period of four months. This extremely slow decline suggests that the explosion's blast wave was moving essentially unimpeded through space, which means that the environment around the star is largely free of material cast off by a stellar wind.

The burst's long-lived X-ray flaring proved a more puzzling feature to explain, requiring observations from Swift, NASA's Chandra X-ray Observatory and ESA's XMM-Newton satellite to sort out. As the high-energy jet bores through the collapsing star, its leading edge rams into cooler stellar gas and heats it. This gas flows down the sides of the jet, surrounding it in a hot X-ray-emitting sheath. Because the jet travels a greater distance through a blue supergiant, this cocoon becomes much more massive than is possible in a Wolf-Rayet star. While the cocoon should expand rapidly as it exits the star, the X-ray evidence indicates that it remained intact. The science team suggests that magnetic fields may have suppressed the flow of hot gas across the cocoon, keeping it confined close to the jet.   

"This is the first time we have detected this thermal cocoon component, likely because all other known ultra-long bursts occurred at greater distances," said Piro.

The astronomers conclude that the best explanation for the unusual properties of GRB 130925A is that it heralded the death of a metal-poor blue supergiant, a model they suggest likely characterizes the entire ultra-long class.

Stars make heavy elements throughout their energy-producing lives and during their death throes in supernova explosions and GRBs. Each generation enriches interstellar gas with a greater proportion of metals, but the process is not uniform and metal-poor galaxies still exist nearby. Looking farther into the universe means looking deeper into the past, toward earlier stellar generations formed out of increasingly metal-poor gas. Astronomers think Population III stars ended their lives as blue supergiants, so GRB 130925A may prove to be a valuable nearby analog to phenomena we may one day detect from the universe's most distant stars.

Francis Reddy
NASA's Goddard Space Flight Center

Francis Reddy | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/out-of-an-hours-long-explosion-a-stand-in-for-the-first-stars/

Further reports about: Astronomers Fermi Flight GRB NASA Telescope X-ray afterglow atmosphere cocoon death explosions spacecraft

More articles from Physics and Astronomy:

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>