Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OU professor teams with German scientists on discovery of rare molecule

11.05.2009
A rare “Rydberg” molecule discovered by scientists from the University of Stuttgart and University of Oklahoma upheld scientific theory predicting the molecule existed.

The team used a gas of rubidium atoms cooled to a temperature of 3 millionths of a degree above absolute zero to produce the molecule. The longest-lived molecule produced by the team survived only for 18 microseconds.

James Shaffer, professor in the OU Department of Physics, was part of the German-led team that made the recent discovery that some say demonstrates a ‘new’ type of bonding, which makes this molecule different from other Rydberg molecules. The electron scattering in this approach can be used as a benchmark test for future quantum calculations of atomic and molecular structure.

Shaffer says a weak bond forms when an electron far from the nucleus and another ground state (normal) atom interact. The electron is slightly attracted to the ground state atom and vice versa. The electron pulls the ground state atom back toward the Rydberg atom just enough so it does not escape. The result is the rare Rydberg molecule like the one produced by the team in Germany.

None of this could occur without the low temperatures obtained using laser cooling and trapping combined with the high-end density of the most advanced types of atom traps. These molecules are an important test for atomic theory which first emerged in 1934 when Enrico Fermi predicted how another atom might behave when interacting with an electron far from its nucleus.

OU researchers are looking for the same types of molecules formed by Cesium atoms, but a Cesium atom is slightly different because there is more than one type of molecule depending on how the spins of the system align. This feature can be used to understand how the magnetic moments of the electron and atom interact.

Jana Smith | EurekAlert!
Further information:
http://www.ou.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>