OU professor teams with German scientists on discovery of rare molecule

The team used a gas of rubidium atoms cooled to a temperature of 3 millionths of a degree above absolute zero to produce the molecule. The longest-lived molecule produced by the team survived only for 18 microseconds.

James Shaffer, professor in the OU Department of Physics, was part of the German-led team that made the recent discovery that some say demonstrates a ‘new’ type of bonding, which makes this molecule different from other Rydberg molecules. The electron scattering in this approach can be used as a benchmark test for future quantum calculations of atomic and molecular structure.

Shaffer says a weak bond forms when an electron far from the nucleus and another ground state (normal) atom interact. The electron is slightly attracted to the ground state atom and vice versa. The electron pulls the ground state atom back toward the Rydberg atom just enough so it does not escape. The result is the rare Rydberg molecule like the one produced by the team in Germany.

None of this could occur without the low temperatures obtained using laser cooling and trapping combined with the high-end density of the most advanced types of atom traps. These molecules are an important test for atomic theory which first emerged in 1934 when Enrico Fermi predicted how another atom might behave when interacting with an electron far from its nucleus.

OU researchers are looking for the same types of molecules formed by Cesium atoms, but a Cesium atom is slightly different because there is more than one type of molecule depending on how the spins of the system align. This feature can be used to understand how the magnetic moments of the electron and atom interact.

Media Contact

Jana Smith EurekAlert!

More Information:

http://www.ou.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors