OU physicists part of international collaboration leading to discovery of Higgs boson

Professors Patrick Skubic, Mike Strauss, Brad Abbott and Phillip Gutierrez, OU College of Arts and Sciences, Homer L. Dodge Department of Physics and Astronomy, work on projects at both Fermilab and CERN. The group concurs the discovery of the Higgs is one of the most important results produced from the international collaboration. The Higgs is the missing piece of the puzzle—it is the one particle that validates and completes what is known in particle physics as the Standard Model.

“We are trying to understand nature by answering some of the most fundamental questions of the universe,” says Strauss. “What are the most basic building blocks of the universe? How did the universe begin? If you don't understand nature today, you won't have technological advances tomorrow. Semi-conductors are a very good example of this,” Strauss remarks.

“Along the way, scientists make discoveries that result in major technological advances. In order to discover these things, we often have to develop new technologies, such as high-speed electronics,” says Abbott. “A part of the OU supercomputer is used to analyze data from the Atlas project at CERN.”

“Another important note, OU scientists helped to build parts of the detector used at CERN and some assembly of detector parts was done in Oklahoma City. Oklahomans played an important role in the discovery of the Higgs boson,” according to Skubic.

Gutierrez explained the differences in how the data is collected at Fermilab and CERN. Fermilab collected data from 2001 to 2011 and ran experiments at a much lower energy than CERN. The other difference is that CERN looks at the decay of the Higgs particle to photons and Fermilab looks at its decay to b-quarks. Fermilab's approach is more direct while CERN's approach is more indirect; however, the two complement each other.

Data collected and analyzed at 5 sigma indicated the discovery of a new particle, but CERN cautioned that further analysis is needed to determine if the particle has the properties of the Higgs. Gutierrez says additional data will be collected and analyzed and samples will have to be extracted to see how the particles decay. The Higgs boson decays immediately after production. So, reconstructing the Higgs in the various decay modes is critical for verification.

Scientists will look at the mass of the particle to determine if it is consistent or inconsistent with the Standard Model. If it is inconsistent, Gutierrez says OU theorist Howard Baer or Chung Kao will be consulted to try to explain the inconsistency. According to Baer, “Finding the Higgs is only the tip of the iceberg. It raises a lot of questions, but we are closing the book on one chapter and opening the door to another chapter in the world of particle physics.”

Funding for the U.S. projects comes from the U.S. Department of Energy and the National Science Foundation. For more information about the OU High-Energy Physics group, visit www.nhn.ou.edu.

Media Contact

Jana Smith EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors