Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Oscillating Ions imitate optical Laser

MPQ/Caltech scientists demonstrate mechanical analogue to an optical laser with single ions.

For decades there has been interest in phonon lasers that emit quanta of vibrational energy - so called phonons - instead of light.

In solids, because of the short wavelength, the implementation of such a device would make it possible to achieve unprecedented resolution in imaging techniques like tomography. The experiment carried out at MPQ is still quite a bit away from these kinds of applications.

However, scientists of the Laser Spectroscopy Division of Prof. Theodor W. Hänsch in cooperation with Prof. Kerry Vahala of the California Institute of Technology (Pasadena, USA), at present guest scientist at MPQ, were able to demonstrate for the first time the effect of coherent phonon generation with a single magnesium ion cooled to a temperature of around 1 milli-Kelvin in an electromagnetic trap. Stimulus to this process is blue-detuned laser radiation.

As the scientists report in Nature Physics (Advance Online Publication 16 August 09, DOI: 10.1038/ NPHYS1367) this device represents a mechanical analogue to an optical laser that allows to investigate the fundamental dynamics of a phonon laser. The device in its present form could possibly be used as a sensor for extremely weak forces. The extension of the system to an ion chain or a two-dimensional ion array could perhaps make the breakthrough to possible applications.

The experiment starts with the preparation of a single magnesium ion in an electromagnetic so-called 'Paul-trap' that gets cooled down to temperatures of around one milli-Kelvin by laser cooling. This widely used technique exploits the fact that an ion irradiated with red-detuned (with respect to a suitable spectral line) laser light gets excited only when travelling towards the laser beam thus losing more and more kinetic energy. This setup represents a mechanical oscillator with adjustable quality factor, analogue to an optical laser resonator whose quality factor is given by the reflectivity of its mirrors.

Now a second laser comes into action, this time blue-detuned. Its purpose is to feed energy into the system, just like the energy source of an optical laser system. While in a series of experiments the intensity of the blue-detuned radiation is ramped up the centre-of-mass motion of the ion gets amplified. At a certain intensity, the threshold, a transition from thermal irregular motion to harmonic oscillations is observed, just like in an optical laser. But the analogy carries even further: The harmonic oscillation is initiated by a spontaneously emitted phonon and sustained by stimulated generation of phonons. Like in its optical counterpart, the oscillation of the ion is stabilized by amplification saturation. As is shown in the figure below, this behavior has in fact been observed and compared with theory by taking a series of time averaged pictures of the single oscillating ion. "An important step in the realization of this kind of phonon laser was the insight that blue-detuned laser light does not merely heat an ion as it is widely believed, but instead, by appropriate choice of frequency and intensity, can stimulate coherent amplification of its motion", Dr. Maximilian Herrmann of the Laser Spectroscopy Division explains.

Current research is directed towards controlling the phonon laser using tools and techniques that can be adapted from the laser world. One example is a technique called injection locking whereby a weak, external control field is used to phase-synchronize the phonon laser with an external reference. This method was used to generate a time resolved image of the coherent motion of the ion as it oscillates.

When implemented in a solid, a phonon laser could enable applications such as high-resolution tomography. This task has yet been hampered by the large number of atoms in bulk solids. Therefore people are interested in one- or two-dimensional structures. "Our single-ion zero-dimensional system anticipates the endpoint of this development", Herrmann says. "It is ideally suited to investigate the transition to a one-dimensional system by adding further ions in a controlled way." Besides these fundamental aspects the scientists also consider to use the oscillating ion as a probe for extremely weak external forces, but "that's all still up in the air", Herrmann concedes. [Maximilian Herrmann/Olivia Meyer-Streng]

Original publication:
K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T.W. Hänsch and Th. Udem
"A phonon laser"
Nature Physics, Advance Online Publication, 16 August 09, DOI: 10.1038/ NPHYS1367
Prof. Dr. Theodor W. Hänsch
Chair of Experimental Physics at Ludwig Maximilian's University, Munich
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 702/712
Fax: +49 - 89 / 32905 312
Dr. Thomas Udem
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 282
Fax: +49 - 89 / 32905 - 312
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>