Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL pushes the boundaries of electron microscopy to unlock the potential of graphene

16.11.2012
Electron microscopy at the Department of Energy's Oak Ridge National Laboratory is providing unprecedented views of the individual atoms in graphene, offering scientists a chance to unlock the material's full potential for uses from engine combustion to consumer electronics.

Graphene crystals were first isolated in 2004. They are two-dimensional (one-atom in thickness), harder than diamonds and far stronger than steel, providing unprecedented stiffness, electrical and thermal properties. By viewing the atomic and bonding configurations of individual graphene atoms, scientists are able to suggest ways to optimize materials so they are better suited for specific applications.

In a paper published in Physical Review Letters, a team of researchers from Oak Ridge National Laboratory and Vanderbilt University used aberration-corrected scanning transmission electron microscopy to study the atomic and electronic structure of silicon impurities in graphene.

"We have used new experimental and computational tools to reveal the bonding characteristics of individual impurities in graphene. For instance, we can now differentiate between a non-carbon atom that is two-dimensionally or three-dimensionally bonded in graphene. In fact, we were finally able to directly visualize a bonding configuration that was predicted in the 1930s but has never been observed experimentally," said ORNL researcher Juan-Carlos Idrobo. Electrons in orbit around an atom fall into four broad categories - s, p, d and f - based on factors including symmetry and energy levels.

"We observed that silicon d-states participate in the bonding only when the silicon is two-dimensionally coordinated," Idrobo said. "There are many elements such as chromium, iron, and copper where the d-states or d-electrons play a dominant role in determining how the element bonds in a material."

By studying the atomic and electronic structure of graphene and identifying any impurities, researchers can better predict which elemental additions will improve the material's performance.

Slightly altering the chemical makeup of graphene could customize the material, making it more suitable for a variety of applications. For example, one elemental addition may make the material a better replacement for the platinum catalytic converters in cars, while another may allow it to function better in electronic devices or as a membrane.

Graphene has the potential to replace the inner workings of electronic gadgets people use every day because of its ability to conduct heat and electricity and its optical transparency. It offers a cheaper and more abundant alternative to indium, a limited resource that is widely used in the transparent conducting coating present in almost all electronic display devices such as digital displays in cars, TVs, laptops and handheld gadgets like cell phones, tablets and music players.

Researchers expect the imaging techniques demonstrated at ORNL to be used to understand the atomic structures and bonding characteristics of atoms in other two-dimensional materials, too.

The authors of the paper are Wu Zhou, Myron Kapetanakis, Micah Prange, Sokrates Pantelides, Stephen Pennycook and Idrobo.

This research was supported by National Science Foundation and the DOE Office of Science. Researchers also made use of Oak Ridge National Laboratory's Shared Research Equipment User Facility along with Lawrence Berkeley National Laboratory's National Energy Research Scientific Computing Center, both of which are also supported by DOE's Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Jennifer Brouner | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>