Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL pushes the boundaries of electron microscopy to unlock the potential of graphene

16.11.2012
Electron microscopy at the Department of Energy's Oak Ridge National Laboratory is providing unprecedented views of the individual atoms in graphene, offering scientists a chance to unlock the material's full potential for uses from engine combustion to consumer electronics.

Graphene crystals were first isolated in 2004. They are two-dimensional (one-atom in thickness), harder than diamonds and far stronger than steel, providing unprecedented stiffness, electrical and thermal properties. By viewing the atomic and bonding configurations of individual graphene atoms, scientists are able to suggest ways to optimize materials so they are better suited for specific applications.

In a paper published in Physical Review Letters, a team of researchers from Oak Ridge National Laboratory and Vanderbilt University used aberration-corrected scanning transmission electron microscopy to study the atomic and electronic structure of silicon impurities in graphene.

"We have used new experimental and computational tools to reveal the bonding characteristics of individual impurities in graphene. For instance, we can now differentiate between a non-carbon atom that is two-dimensionally or three-dimensionally bonded in graphene. In fact, we were finally able to directly visualize a bonding configuration that was predicted in the 1930s but has never been observed experimentally," said ORNL researcher Juan-Carlos Idrobo. Electrons in orbit around an atom fall into four broad categories - s, p, d and f - based on factors including symmetry and energy levels.

"We observed that silicon d-states participate in the bonding only when the silicon is two-dimensionally coordinated," Idrobo said. "There are many elements such as chromium, iron, and copper where the d-states or d-electrons play a dominant role in determining how the element bonds in a material."

By studying the atomic and electronic structure of graphene and identifying any impurities, researchers can better predict which elemental additions will improve the material's performance.

Slightly altering the chemical makeup of graphene could customize the material, making it more suitable for a variety of applications. For example, one elemental addition may make the material a better replacement for the platinum catalytic converters in cars, while another may allow it to function better in electronic devices or as a membrane.

Graphene has the potential to replace the inner workings of electronic gadgets people use every day because of its ability to conduct heat and electricity and its optical transparency. It offers a cheaper and more abundant alternative to indium, a limited resource that is widely used in the transparent conducting coating present in almost all electronic display devices such as digital displays in cars, TVs, laptops and handheld gadgets like cell phones, tablets and music players.

Researchers expect the imaging techniques demonstrated at ORNL to be used to understand the atomic structures and bonding characteristics of atoms in other two-dimensional materials, too.

The authors of the paper are Wu Zhou, Myron Kapetanakis, Micah Prange, Sokrates Pantelides, Stephen Pennycook and Idrobo.

This research was supported by National Science Foundation and the DOE Office of Science. Researchers also made use of Oak Ridge National Laboratory's Shared Research Equipment User Facility along with Lawrence Berkeley National Laboratory's National Energy Research Scientific Computing Center, both of which are also supported by DOE's Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Jennifer Brouner | EurekAlert!
Further information:
http://www.ornl.gov

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>