Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Microscopy Explores Nanowires’ Weakest Link

15.02.2012
Individual atoms can make or break electronic properties in one of the world’s smallest known conductors—quantum nanowires. Microscopic analysis at the Department of Energy’s Oak Ridge National Laboratory is delivering a rare glimpse into how the atomic structure of the conducting nanowires affects their electronic behavior.
The ORNL team’s microscopy confirmed that deliberately introduced defects, which are only the size of a single atom, could turn a conducting nanowire into an insulator by shutting down the path of electrons. Led by ORNL’s An-Ping Li, the research team used multiple-probe scanning tunneling microscopy to analyze nanowires made of a material called gadolinium silicide.

“This type of one-dimensional conductor is expected to be a fundamental component in all quantum electronic architectures,” said Li, a research scientist at ORNL’s Center for Nanophase Materials Science. “One advantage of GdSi2 nanowires is they are compatible with conventional silicon technology and are thus easier to implement in nanoelectronic devices.”

An-Ping Li and Shengyong Qin/ORNL

A one-dimensional quantum nanowire (seen in yellow on left) can turn from a conductor to an insulator with the addition of a single atomic defect, according to microscopic analysis from Oak Ridge National Laboratory. Bundles of nanowires (right) are generally more stable, leading to better conductance.

The research, published in the American Chemical Society’s Nano Letters, is the first correlated study that links electron movement to structural elements such as single point defects or impurities that are intentionally grown in the nanowires.

“When a conductor becomes so small, it will be very sensitive to atomic defects on the nanowire,” Li said. “If the conductor or the wire is big, electrons can always find a way to go around. But with such a small nanowire, electrons have no way to escape. When you put only a few defects on this nanowire, you can cut off the conductance and can convert a conductor into an insulator.”

Although single nanowires exhibited the metal-to-insulator transition, the ORNL team observed different behavior in bundles of nanowires constructed of two, three or more wires separated by only a few angstroms.

“If you put bundles together, the interwire coupling generally has a stabilizing effect on the structure which in turn leads to better conductance,” Li said.

The team also used theoretical first principles calculations to confirm and explain its experimental findings. Coauthors on the paper are ORNL’s Shengyong Qin, Tae-Hwan Kim and Arthur Baddorf; Yanning Zhang, Wenjie Ouyang and Ruqian Wu of the University of California, Irvine; Hanno Weitering of the University of Tennessee; and Chih-Kang Shih of the University of Texas at Austin.

The full paper, “Correlating Electronic Transport to Atomic Structures in Self-Assembled Quantum Wires,” is available here: http://pubs.acs.org/doi/full/10.1021/nl204003s.

This work was supported by the Center for Nanophase Materials Sciences at ORNL. CNMS is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/. Theoretical work at the University of California, Irvine was supported by DOE's Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Morgan McCorkle | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>