Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORMatE returns to NRL after nearly 2 years in Earth orbit

02.10.2009
Completing an 18-month mission orbiting the Earth more than 6,000 times on-orbit the International Space Station (ISS), the Optical Reflector Material Experiment (ORMatE-1) returns to Washington, D.C., to NRL's Electronics Science and Technology Division to begin experiment testing and analysis.

Retrieved September 2009 by the crew of NASA's Space Shuttle Endeavour, ORMatE-1 is a passive study of optically reflective materials with a focus on silicon carbide (SiC) for use as a lightweight mirror substrate. Various types of SiC ceramics, as well as various coating materials and cladding deposition technologies are also tested in the experiment.

"Lightweight, high precision mirrors are critical for enhanced optical systems and advanced communication systems currently being designed and tested," said Robert Walters, Ph.D., head of NRL's Solid State Devices Branch. "The effects of different optical polishing methods are investigated to determine if the different processes result in varying resistance to radiation exposure for future space-based applications."

ORMatE-1 provides a platform to expose new materials to the harsh environment of space and to generate on-orbit performance data to support space qualification of specific materials. The experiments are housed within the Passive Experiment Container (PEC), a roughly two-foot by two-foot metal box, and affixed to the ISS. After an exposed period of one to two years, the PEC is closed and recovered by an astronaut for return to Earth for post-flight evaluation.

... more about:
»Earth's magnetic field »ISS »Laboratory »NASA »NRL »Naval »ORMatE »ORMatE-1 »PEC »SIC »Space

In addition to SiC material testing, NRL scientists will conduct post-flight analysis of other advanced glass substrate materials including ultra-low expansion (ULE) and corrugated borosilicate, multiple coating and traditional substrate combinations and a novel mirror design consisting of a composite sandwich structure of molded borosilicate used to evaluate structural integrity and optical performance. ORMatE-1 will help quantify effects on optical and mechanical properties as a result of radiation, micrometeor pitting and compaction, which can change the radius curvature of components. Research will also assist in determining the effects of degassing of dense and porous materials as a result of going from ambient to vacuum conditions, ultra-violet (UV) and atomic oxygen exposure.

ORMatE-1 is conducted as a scientific research partnership with The Aerospace Corporation, Naval Research Laboratory and the Air Force Research Laboratory Materials Directorate (AFRL/ML) and is part of NASA's Materials on the International Space Station Experiment (MISSE), a Langley Research Center (LaRC) program designed to provide rapid access to space for materials and device exposure tests via the ISS.

The Naval Research Laboratory is the Department of the Navy's corporate laboratory. NRL conducts a broad program of scientific research, technology, and advanced development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, DC, with other major sites at the Stennis Space Center, MS; and Monterey, CA.

Daniel Parry | EurekAlert!
Further information:
http://www.nrl.navy.mil

Further reports about: Earth's magnetic field ISS Laboratory NASA NRL Naval ORMatE ORMatE-1 PEC SIC Space

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>