Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


On the Origins of Our Solar System

Second funding period for DFG priority programme coordinated by Heidelberg scientists

After positive evaluation by an international team of experts, the Priority Programme (SPP 1385) “The First Ten Million Years of the Solar System” supported by the German Research Council (DFG) has now embarked on its second funding period with twelve new projects on board.

The programme is coordinated by Prof. Dr. Mario Trieloff of Heidelberg University and Prof. Dr. Klaus Mezger of the University of Bern (Switzerland) and at present comprises 45 research projects, ten of them in Heidelberg. The aim of the scientists involved in SPP 1385 is to analyse extraterrestrial material such as meteorites for what it can tell them about the planet formation process taking place 4.5 billion years ago. The DFG is providing approx. EUR 5.5 million for the continuation of the research work, of which EUR 1.2 million has been allocated to Heidelberg.

The goal of the projects in the first funding period was to deepen our understanding of the way planets form. “Planets are the very basis of life as we know it,” says earth scientist Mario Trieloff. “But the formation process involved is still surrounded by many mysteries. For example, from meteorites we are familiar with the first centimetre-sized mineral aggregates in the solar system, but we know very little about how they formed.” In the course of time, dust particles mere micrometres in diameter clump together to form “whoppers” several metres in diameter or even asteroids and comets that can be kilometres in size. But we still do not know whether the time scale involved in their formation was thousands or millions of years. Also unanswered is the question of how the Earth formed out of a number of smaller protoplanets or where the water on Earth came from. According to Prof. Trieloff, major progress towards the solution of these issues has already been made in the first funding period.

The investigations of the priority programme revolve crucially around material from small bodies like asteroids and comets, the point being that they have not evolved to the formation of a large planet but have remained at the level of small planets called planetesimals. “This means that they have preserved the unchanged relics of dust and rock composition on the way to larger planetary bodies,” says Prof. Trieloff. In this connection, the scientists are investigating sample material from meteorites and comets as well as interstellar material from which the first small bodies and planetesimals took shape. Isotopic dating is used to define more closely the span of time in which asteroids hundred of kilometres across achieved their present dimensions. In addition, the scientists are looking into the heating and the chemical and physical development of planetesimals.

For the first two years of the research work being done in the framework of SPP 1385, 36 projects with a funding volume of approx. EUR 4 million were approved. Of these, 33 are to be continued and supplemented by the 12 new projects. According to coordinators Mario Trieloff and Klaus Mezger, the international evaluation panel ranked the priority programme as being on the same level as the thematically similar cosmochemistry programme of NASA. In their evaluation report, they anticipated that the large proportion of young scientists involved would contribute to the development of new approaches that might be pioneering in the international context. The ten Heidelberg projects are conducted at the University’s Institute for Earth Sciences, Centre for Astronomy and Kirchhoff Institute for Physics and the Max Planck Institutes for Astronomy and for Nuclear Physics. The research projects of the entire programme are spread out over 16 locations in Germany plus the Institute of Geological Sciences at the University of Bern.

For more information, go to

Apl. Prof. Dr. Mario Trieloff
Institute for Earth Sciences
phone: +49 6221 54-6022

Communications and Marketing
Press Office, phone: +49 6221 54-2311

Marietta Fuhrmann-Koch | idw
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>