Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The origin of supernovae confirmed

23.03.2009
Where do supernovae come from? Astronomers have long believed they were exploding stars, but by analysing a series of images, researchers from the Dark Cosmology Centre at the Niels Bohr Institute, University of Copenhagen and from Queens University, Belfast have proven that two dying red supergiant stars produced supernovae. The results are published in the prestigious scientific journal, Science.

A star is a large ball of hot gas and in its incredibly hot interior hydrogen atoms combine to form helium, which subsequently forms carbon, other heavier elements and finally iron. When all the atoms in the centre have turned to iron the fuel is depleted and the star dies. When very large and massive stars, that are at least about eight times as massive as our sun, die, they explode as supernovae.

Enormous swollen stars

But some massive stars become red supergiant stars first, which is an intermediate phase where, after the fuel in the centre is used up, energy is still produced in shells surrounding the now dead core. In this phase, the star swells up to an enormous size, approximately 1500 times larger than the sun, and emits as much light as a hundred thousand suns. But there has been doubt over whether red supergiants explode as supernovae.

Using images from the Hubble Space Telescope and the Gemini Observatory, Justyn R. Maund, astrophysicist at the Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen and astrophysicist Stephen J. Smartt, Queens University Belfast, have observed two stars that exploded as supernovae. By analysing archival images of the same section of the sky from long before the explosions, the researchers could see which stars might have gone supernova. But picking out individual stars in the distant universe is difficult, and pinpointing exactly which star it was that exploded is a huge challenge.

Stars became supernovae

A supernova is visible in the sky for some time after its explosion before its giant dust- and gas clouds are blown clear. The researchers can then observe the region around the position of the supernova several years after the supernova explosion and can then see exactly which star has disappeared.

For one of the supernovae, SN1993J (which exploded in 1993) they found that a red supergiant no longer exists, but that its neighboring star remained. In addition, they found that the red supergiant that was postulated to have caused the supernova SN2003gd has also disappeared. This simple but very time intensive method, establishes that it was these two red supergiant stars that produced the supernovae 2003J and 2003gd, and confirms that red supergiant stars create type II supernovae.

Maund and Smartt have found the missing link between red supergiant stars and their supernovae, giving astronomers a greater understanding of how massive stars die. Stellar death is a process crucial for understanding the origin of the chemical elements in the Universe, a precursor necessary ultimately to the formation of planets and life.

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk
http://www.sciencemag.org/cgi/content/short/1170198

More articles from Physics and Astronomy:

nachricht Magnetic field traces gas and dust swirling around supermassive black hole
22.02.2018 | Royal Astronomical Society

nachricht UMass Amherst physicists contribute to dark matter detector success
22.02.2018 | University of Massachusetts at Amherst

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>