Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The origin of supernovae confirmed

23.03.2009
Where do supernovae come from? Astronomers have long believed they were exploding stars, but by analysing a series of images, researchers from the Dark Cosmology Centre at the Niels Bohr Institute, University of Copenhagen and from Queens University, Belfast have proven that two dying red supergiant stars produced supernovae. The results are published in the prestigious scientific journal, Science.

A star is a large ball of hot gas and in its incredibly hot interior hydrogen atoms combine to form helium, which subsequently forms carbon, other heavier elements and finally iron. When all the atoms in the centre have turned to iron the fuel is depleted and the star dies. When very large and massive stars, that are at least about eight times as massive as our sun, die, they explode as supernovae.

Enormous swollen stars

But some massive stars become red supergiant stars first, which is an intermediate phase where, after the fuel in the centre is used up, energy is still produced in shells surrounding the now dead core. In this phase, the star swells up to an enormous size, approximately 1500 times larger than the sun, and emits as much light as a hundred thousand suns. But there has been doubt over whether red supergiants explode as supernovae.

Using images from the Hubble Space Telescope and the Gemini Observatory, Justyn R. Maund, astrophysicist at the Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen and astrophysicist Stephen J. Smartt, Queens University Belfast, have observed two stars that exploded as supernovae. By analysing archival images of the same section of the sky from long before the explosions, the researchers could see which stars might have gone supernova. But picking out individual stars in the distant universe is difficult, and pinpointing exactly which star it was that exploded is a huge challenge.

Stars became supernovae

A supernova is visible in the sky for some time after its explosion before its giant dust- and gas clouds are blown clear. The researchers can then observe the region around the position of the supernova several years after the supernova explosion and can then see exactly which star has disappeared.

For one of the supernovae, SN1993J (which exploded in 1993) they found that a red supergiant no longer exists, but that its neighboring star remained. In addition, they found that the red supergiant that was postulated to have caused the supernova SN2003gd has also disappeared. This simple but very time intensive method, establishes that it was these two red supergiant stars that produced the supernovae 2003J and 2003gd, and confirms that red supergiant stars create type II supernovae.

Maund and Smartt have found the missing link between red supergiant stars and their supernovae, giving astronomers a greater understanding of how massive stars die. Stellar death is a process crucial for understanding the origin of the chemical elements in the Universe, a precursor necessary ultimately to the formation of planets and life.

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk
http://www.sciencemag.org/cgi/content/short/1170198

More articles from Physics and Astronomy:

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

nachricht Integrated lasers on different surfaces
19.09.2017 | The Agency for Science, Technology and Research (A*STAR)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

Solar wind impacts on giant 'space hurricanes' may affect satellite safety

19.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>