Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orbiting Cryogenic Molecules

01.06.2015

First experiment in the cryogenic storage ring CSR of the Max Planck Institute for Nuclear Physics

After years of development and construction work, physicists of the MPI for Nuclear Physics now for the first time succeeded to hold negatively charged molecules, namely hydroxide ions (OH–), at a few degrees above absolute zero orbiting inside their novel storage ring and perform experiments with them.


Insights into the Cryogenic Storage Ring during the construction pase.

Photos: MPIK


Some of the ions are neutralized by a laser beam, such that few OH radicals leave the ring and are detected. Without laser this rate is extremely low, indicating an extremely good vacuum.

Graphics: MPIK

The CSR (Cryogenic Storage Ring), a world-wide unique electrostatic storage ring for ions, is designed for operation at lowest temperatures. It enables researchers to investigate the chemistry of interstellar clouds on Earth and to gain fundamental insight into the ‘inner life’ of molecules.

It took almost three weeks until the new ultra-cold Cryogenic Storage Ring (CSR) had reached a temperature of –265C, just a few degrees above absolute zero. During the cool-down phase the pressure inside the ring dropped to an estimated value of 10^–13 mbar, which is sixteen orders of magnitude lower than atmospheric pressure and very difficult to measure precisely.

Shortly afterwards a first milestone was accomplished by storing positively charged argon ions (Ar+) in the ring. These initial tests gave the green light for the first experiment. “We produced hydroxyl ions (OH–) in our ion source, injected them into the CSR and stored them on a stable orbit for more than 10 minutes – this alone constitutes a great success for our team”, explains Andreas Wolf, one of the experimental physicists who have been driving the development of the CSR, “however, now we had to find out whether the stored ions are really cooling down to interstellar temperatures.”

To this end a tunable laser system is used. The stored OH– ions are exposed to the laser beam, which can detach the extra electron and produce neutral OH radicals. The neutral OH particles are no longer stored by the electromagnetic fields of the ring – owing to the lack of an electric charge – and thus are ejected from the stable orbit and recorded by a dedicated detector.

Depending on the frequency of the laser (corresponding to the color of the light) the neutralization process addresses different energy levels of the OH– ions, indicating how much internal energy the ion possessed before it interacted with the laser light.

A first evaluation of the experimental data revealed that not only the internal vibrations of the OH– ions had decayed, but that also the rotational excitation of the majority of the stored OH– ions had reached the lowest quantum state, indicating that the ions are indeed cooling down to interstellar temperatures.

“It really appears that our new ‘machine’ is living up to all of our expectations” Klaus Blaum, director and head of the “Stored and Cooled Ions” division at MPIK, is pleased to report. “The CSR will be able to realize its full potential in our forthcoming experiments on the chemistry of interstellar space” adds Holger Kreckel, group leader of the ERC-financed ASTROLAB project at MPIK.

The commissioning of the CSR constitutes the successful completion of a novel technological realization of an ultra-cold storage ring at MPIK. “With its purely electrostatic ion optics, its extremely low pressure and low temperature, the CSR allows for the storage of large molecular ions in their lowest quantum states”, summarizes Robert von Hahn, who led the technological development of the CSR.

The physicists at MPIK now have access to a unique instrument for fundamental experiments with molecular ions and clusters. The MPIK is grateful to the Max Planck Society for providing the financial support for the development and realization of the CSR project. Furthermore, the Weizmann Institute of Science in Rehovot (Israel) also contributed to the realization of the CSR and future experiments will be carried out in collaboration with (amongst others) the Universities of Heidelberg, Giessen, Greifswald, and Kaiserslautern; Columbia University (New York City, USA) and the Université catholique de Louvain (Louvain-la-Neuve, Belgium).

Contact:

Prof. Dr. Klaus Blaum
phone: +496221 516850
e-mail: klaus.blaum@mpi-hd.mpg.de

Dr. Robert von Hahn
phone: +496221 516396
e-mail: robert.von.hahn@mpi-hd.mpg.de

Prof. Dr. Andreas Wolf
phone: +496221 516503
e-mail: andreas.wolf@mpi-hd.mpg.de

Dr. Holger Kreckel
phone: +496221 516517
e-mail: holger.kreckel@mpi-hd.mpg.de

Weitere Informationen:

http://www.mpi-hd.mpg.de/mpi/fileadmin/files-mpi/Flyer/CSR-en_new.pdf - The Cryogenic Storage Ring CSR (pdf)
http://www.mpi-hd.mpg.de/mpi/de/abteilungen/abteilung-blaum/ - Division Stored and Cooled Ions at the MPIK
http://www.mpi-hd.mpg.de/mpi/astrolab/ - ASTROLAB group at the MPIK

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>