Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orbiting Cryogenic Molecules

01.06.2015

First experiment in the cryogenic storage ring CSR of the Max Planck Institute for Nuclear Physics

After years of development and construction work, physicists of the MPI for Nuclear Physics now for the first time succeeded to hold negatively charged molecules, namely hydroxide ions (OH–), at a few degrees above absolute zero orbiting inside their novel storage ring and perform experiments with them.


Insights into the Cryogenic Storage Ring during the construction pase.

Photos: MPIK


Some of the ions are neutralized by a laser beam, such that few OH radicals leave the ring and are detected. Without laser this rate is extremely low, indicating an extremely good vacuum.

Graphics: MPIK

The CSR (Cryogenic Storage Ring), a world-wide unique electrostatic storage ring for ions, is designed for operation at lowest temperatures. It enables researchers to investigate the chemistry of interstellar clouds on Earth and to gain fundamental insight into the ‘inner life’ of molecules.

It took almost three weeks until the new ultra-cold Cryogenic Storage Ring (CSR) had reached a temperature of –265C, just a few degrees above absolute zero. During the cool-down phase the pressure inside the ring dropped to an estimated value of 10^–13 mbar, which is sixteen orders of magnitude lower than atmospheric pressure and very difficult to measure precisely.

Shortly afterwards a first milestone was accomplished by storing positively charged argon ions (Ar+) in the ring. These initial tests gave the green light for the first experiment. “We produced hydroxyl ions (OH–) in our ion source, injected them into the CSR and stored them on a stable orbit for more than 10 minutes – this alone constitutes a great success for our team”, explains Andreas Wolf, one of the experimental physicists who have been driving the development of the CSR, “however, now we had to find out whether the stored ions are really cooling down to interstellar temperatures.”

To this end a tunable laser system is used. The stored OH– ions are exposed to the laser beam, which can detach the extra electron and produce neutral OH radicals. The neutral OH particles are no longer stored by the electromagnetic fields of the ring – owing to the lack of an electric charge – and thus are ejected from the stable orbit and recorded by a dedicated detector.

Depending on the frequency of the laser (corresponding to the color of the light) the neutralization process addresses different energy levels of the OH– ions, indicating how much internal energy the ion possessed before it interacted with the laser light.

A first evaluation of the experimental data revealed that not only the internal vibrations of the OH– ions had decayed, but that also the rotational excitation of the majority of the stored OH– ions had reached the lowest quantum state, indicating that the ions are indeed cooling down to interstellar temperatures.

“It really appears that our new ‘machine’ is living up to all of our expectations” Klaus Blaum, director and head of the “Stored and Cooled Ions” division at MPIK, is pleased to report. “The CSR will be able to realize its full potential in our forthcoming experiments on the chemistry of interstellar space” adds Holger Kreckel, group leader of the ERC-financed ASTROLAB project at MPIK.

The commissioning of the CSR constitutes the successful completion of a novel technological realization of an ultra-cold storage ring at MPIK. “With its purely electrostatic ion optics, its extremely low pressure and low temperature, the CSR allows for the storage of large molecular ions in their lowest quantum states”, summarizes Robert von Hahn, who led the technological development of the CSR.

The physicists at MPIK now have access to a unique instrument for fundamental experiments with molecular ions and clusters. The MPIK is grateful to the Max Planck Society for providing the financial support for the development and realization of the CSR project. Furthermore, the Weizmann Institute of Science in Rehovot (Israel) also contributed to the realization of the CSR and future experiments will be carried out in collaboration with (amongst others) the Universities of Heidelberg, Giessen, Greifswald, and Kaiserslautern; Columbia University (New York City, USA) and the Université catholique de Louvain (Louvain-la-Neuve, Belgium).

Contact:

Prof. Dr. Klaus Blaum
phone: +496221 516850
e-mail: klaus.blaum@mpi-hd.mpg.de

Dr. Robert von Hahn
phone: +496221 516396
e-mail: robert.von.hahn@mpi-hd.mpg.de

Prof. Dr. Andreas Wolf
phone: +496221 516503
e-mail: andreas.wolf@mpi-hd.mpg.de

Dr. Holger Kreckel
phone: +496221 516517
e-mail: holger.kreckel@mpi-hd.mpg.de

Weitere Informationen:

http://www.mpi-hd.mpg.de/mpi/fileadmin/files-mpi/Flyer/CSR-en_new.pdf - The Cryogenic Storage Ring CSR (pdf)
http://www.mpi-hd.mpg.de/mpi/de/abteilungen/abteilung-blaum/ - Division Stored and Cooled Ions at the MPIK
http://www.mpi-hd.mpg.de/mpi/astrolab/ - ASTROLAB group at the MPIK

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>