First the orbit, then the spin

Christian Stamm and his colleagues at the Helmholtz-Zentrum Berlin für Mate-rialien und Energie (HZB) can look back on six years of pioneering work at the synchrotron BESSY II. They have set up a unique experiment on so-called femtoslicing, and are now publishing a result obtained in collaboration with an external user group. Together with their colleagues from Strasbourg, they report in the upcoming issue of Nature how fast the magnetism of a material can be influenced.

“The ultra-fast processes contributing towards the phenomenon of magnetism can only be revealed by femtoslicing,” says Christian Stamm explaining the enormous effort it took the several HZB researchers to set up the experiment at the Berlin synchrotron source BESSY II.

They fire ultra-short laser pulses at electrons moving at close to the speed of light in the storage ring. The electrons struck by these pulses subsequently differ from those that do not encounter the laser beam. The X-ray light these electrons emit during their cycle through the storage ring – the special synchrotron light – now also bears the characteristics added by the laser light. Finally, the magnetic sample is studied using these ultra-short X-ray flashes.

What is special about BESSY II is that it is the only place in the world where users will find circular-polarized X-ray light for slicing experiments. And this is absolutely essential for studying spin and orbital moment – the phenomena underlying magnetism.

The results Christian Stamm and his colleagues produced with their femtoslicing experiments provide a fundamental insight: “We were able to demonstrate through what path and how fast the added energy gets into the electron spin,” says the physicist. And ultimately how fast magnetism can be controlled from the outside.

For the spintronic and semiconductor technology industries, who wish to build future computers using “spin up” and “spin down” in place of the parameters “1” and “0”, this finding is certainly another crucial milestone, for it shows in detail how the change in spin takes place. “The orbital motion of the electrons changes very rapidly when energy is added,” explains Christian Stamm. Unlike the spin, which reacts at a delay. That means “if you want to change the elec-tron spin, the orbital path of the electrons must be disrupted first. Only then does the spin flip.”

Further Information:
Dr. Christian Stamm,
Institute Methods and Instruments for Synchrotron Radiation Research
Tel.: +49 (0)30-6392-4887
christian.stamm@helmholtz-berlin.de
Press Office:
Dr. Ina Helms
Tel.: +49(0)30-8062-2034 or +49(0)30-6392-4922
ina.helms@helmholtz-berlin.de

Media Contact

Dr. Ina Helms Helmholtz-Zentrum

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors