Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First the orbit, then the spin

27.05.2010
Novel storage materials of the future will be made out of magnetic films. Researchers at HZB are the first to find out just how fast magnetic particles can be controlled.

Christian Stamm and his colleagues at the Helmholtz-Zentrum Berlin für Mate-rialien und Energie (HZB) can look back on six years of pioneering work at the synchrotron BESSY II. They have set up a unique experiment on so-called femtoslicing, and are now publishing a result obtained in collaboration with an external user group. Together with their colleagues from Strasbourg, they report in the upcoming issue of Nature how fast the magnetism of a material can be influenced.

“The ultra-fast processes contributing towards the phenomenon of magnetism can only be revealed by femtoslicing,” says Christian Stamm explaining the enormous effort it took the several HZB researchers to set up the experiment at the Berlin synchrotron source BESSY II.

They fire ultra-short laser pulses at electrons moving at close to the speed of light in the storage ring. The electrons struck by these pulses subsequently differ from those that do not encounter the laser beam. The X-ray light these electrons emit during their cycle through the storage ring – the special synchrotron light – now also bears the characteristics added by the laser light. Finally, the magnetic sample is studied using these ultra-short X-ray flashes.

What is special about BESSY II is that it is the only place in the world where users will find circular-polarized X-ray light for slicing experiments. And this is absolutely essential for studying spin and orbital moment – the phenomena underlying magnetism.

The results Christian Stamm and his colleagues produced with their femtoslicing experiments provide a fundamental insight: “We were able to demonstrate through what path and how fast the added energy gets into the electron spin,” says the physicist. And ultimately how fast magnetism can be controlled from the outside.

For the spintronic and semiconductor technology industries, who wish to build future computers using “spin up” and “spin down” in place of the parameters “1” and “0”, this finding is certainly another crucial milestone, for it shows in detail how the change in spin takes place. “The orbital motion of the electrons changes very rapidly when energy is added,” explains Christian Stamm. Unlike the spin, which reacts at a delay. That means “if you want to change the elec-tron spin, the orbital path of the electrons must be disrupted first. Only then does the spin flip.”

Further Information:
Dr. Christian Stamm,
Institute Methods and Instruments for Synchrotron Radiation Research
Tel.: +49 (0)30-6392-4887
christian.stamm@helmholtz-berlin.de
Press Office:
Dr. Ina Helms
Tel.: +49(0)30-8062-2034 or +49(0)30-6392-4922
ina.helms@helmholtz-berlin.de

Dr. Ina Helms | Helmholtz-Zentrum
Further information:
http://www.helmholtz-berlin.de

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>