Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics: Statistics light the way

23.05.2013
Revelation of how photoreceptive cells in the eye distinguish between different light sources could pave the way for a novel class of optical devices
Millions of years of evolution have molded our eyes into highly sensitive optical detectors, surpassing even many man-made devices. Now, Leonid Krivitsky and his co-workers at the A*STAR Data Storage Institute and the A*STAR Institute of Medical Biology, Singapore, have shown that the photoreceptor cells found in the retina are even sensitive to the statistical properties of light. This ability could be harnessed in 'bioquantum' interfaces, a novel class of optical devices that use biological systems to detect the quantum nature of light.

Light comprises discrete bundles of energy known as photons. A 40-Watt light bulb, for example, creates more than 1019 (a one followed by 19 zeros) visible photons every second. Nevertheless, attenuated sources that generate light pulses containing just a few photons are also useful. In such ultralow-intensity light pulses, the statistical distribution of photons emitted in a single pulse depends on the light source.

Warm light sources such as light-bulb filaments generate photons in bunches. Lasers, in contrast, create photons randomly — each is emitted independently of the next. Krivitsky and his co-workers experimentally demonstrated that rod photoreceptor cells in the eye can distinguish between pulses of light from either a laser or a thermal light based only on these differing distributions. “Showing that such cells can assess photon statistics provides hope for accessing the quantum properties of light using biodetectors,” says Krivitsky.

Krivitsky and his team trapped a photoreceptor cell from a frog on the end of a suction pipette. Then they fired green-light laser pulses at the cell through an optical fiber. The same device could also imitate a thermal light source when they placed a rotating disk of ground glass and an aperture into the beam path.

They observed that rhodopsin molecules in the cell absorbed the incoming photons, which generated an ion current. The researchers amplified and measured this current as the average number of photons in each light pulse increased. They noticed a much sharper increase in detected current for the laser light than the pseudothermal pulses. This is because, while the average photon number is the same, an individual pseudothermal pulse was more likely to have a low number of photons. The photon distribution of the laser pulses, on the other hand, was much narrower.

The two types of photon emitters investigated in these experiments are examples of ‘classical’ light sources. “The next step is to investigate quantum light, such as pulses with a fixed number of photons,” notes Krivitsky.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute and the Institute of Medical Biology

Journal information

Sim, N., Cheng, M. F., Bessarab, D., Jones, C. M. & Krivitsky, L. A. Measurement of photon statistics with live photoreceptor cells. Physical Review Letters 109, 113601 (2012)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6674
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>