Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics Express focus issue on chalcogenide photonics: Fabrication, devices and applications

07.12.2010
Recent progress in chalcogenide glass photonics has been driven by scientific and technological challenges in a variety of areas.

These range from increased demand for bandwidth in optical communications, to the emergence of bio-health hazards associated with hazardous microorganisms that absorb at mid-infrared wavelengths, to defense applications that require bright mid-infrared sources.

Additionally, chalcogenide glass provides a platform for fundamental investigations of light-matter interactions in nanophotonic structures, such as photonic crystals and metamaterials. To highlight breakthroughs in this area, Optics Express today published a special focus issue on Chalcogenide Photonics: Fabrication, Devices and Applications (http://www.opticsinfobase.org/oe/issue.cfm?volume=18&issue=25).

The issue was organized and edited by Benjamin Eggleton, director of the Australian Research Council's Centre for Ultrahigh-bandwidth Devices for Optical Systems and professor at the University of Sydney.

"This focus issue was created with the intent to represent the current state-of-the-art in the field of chalcogenide photonics," said Eggleton. "The combination of their unique optical properties with the flexibility in tailoring the composition and fabrication methodology makes the chalcogenides compelling for photonics research and has stimulated research groups around the world to actively pursue this vibrant area."

SUMMARY

Chalcogenide glasses contain as a major constituent one or more of the chalcogen elements from the periodic table (i.e. Sulphur, Selenium and Tellurium, but excluding Oxygen) covalently bonded to other elements such as As, Ge, Sb, Ga, Si, or P. Chalcogenide glasses have been studied since the 1950s due to their amazing optical properties. They have already found important applications in a number of areas, including the electronics industry and in imaging applications. In the last decade there has been renewed interest in these materials because of their unique optical nonlinear and midinfared properties. An optical material is said to be nonlinear if its optical properties depend on the intensity of the light, an effect that can lead to all-optical switching. The chalcogenide's nonlinear optical properties are not only very strong (hundreds of times that of conventional glass), but also extremely fast (on the order of 10s of femtoseconds—the time it takes for light to travel only a fraction of a millimeter). The fast and strong nonlinearity of chalcogenides makes them attractive as ultrafast nonlinear devices, which can operate much faster than state-of-the-art electronics, or in efficient frequency conversion schemes. In contrast to conventional glass, chalcogenide glasses are transmissive well into the mid-infrared region (e.g. sulphides transmit to ~11um) and are photosensitive to visible light.

This special issue reviews recent progress in this field with 13 invited articles from the leading groups in this field. This issue is comprehensive with articles that can be categorized into a number of areas: (i) chalcogenide material and device science, (ii) device fabrication, (iii) applications in nonlinear optics, and (iv) sensing applications.

KEY FINDINGS AND SELECTED PAPERS

The following papers are some of the highlights of the Optics Express focus issue on Chalcogenide Photonics. All are included in volume 18, issue 25 and can be accessed online at http://www.OpticsInfoBase.org/OE.

A paper from Yokohama National University in Japan and the Japan Science and Technology Agency reports massive optical nonlinearity in chalcogenide photonic crystal waveguides and demonstrates highly efficient nonlinear processes.

"Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides." Keijiro Sukuzi, Toshihiko Baba, Yokohama National University, Japan Science and Technology Agency, p. 26675. (See: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26675.)

A team of researchers from five institutions in the U.S. and Italy report on novel sensing architectures for mid infrared wavelengths using chalcogenide waveguide resonators. They exploit the chalcogenide photosensitivity to post-trim resonators and compensate for fabrication imperfections.

"Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges." Nathan Carlie et al., p. 26728 (See: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26728.)

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/OE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>