Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics Express focus issue on chalcogenide photonics: Fabrication, devices and applications

07.12.2010
Recent progress in chalcogenide glass photonics has been driven by scientific and technological challenges in a variety of areas.

These range from increased demand for bandwidth in optical communications, to the emergence of bio-health hazards associated with hazardous microorganisms that absorb at mid-infrared wavelengths, to defense applications that require bright mid-infrared sources.

Additionally, chalcogenide glass provides a platform for fundamental investigations of light-matter interactions in nanophotonic structures, such as photonic crystals and metamaterials. To highlight breakthroughs in this area, Optics Express today published a special focus issue on Chalcogenide Photonics: Fabrication, Devices and Applications (http://www.opticsinfobase.org/oe/issue.cfm?volume=18&issue=25).

The issue was organized and edited by Benjamin Eggleton, director of the Australian Research Council's Centre for Ultrahigh-bandwidth Devices for Optical Systems and professor at the University of Sydney.

"This focus issue was created with the intent to represent the current state-of-the-art in the field of chalcogenide photonics," said Eggleton. "The combination of their unique optical properties with the flexibility in tailoring the composition and fabrication methodology makes the chalcogenides compelling for photonics research and has stimulated research groups around the world to actively pursue this vibrant area."

SUMMARY

Chalcogenide glasses contain as a major constituent one or more of the chalcogen elements from the periodic table (i.e. Sulphur, Selenium and Tellurium, but excluding Oxygen) covalently bonded to other elements such as As, Ge, Sb, Ga, Si, or P. Chalcogenide glasses have been studied since the 1950s due to their amazing optical properties. They have already found important applications in a number of areas, including the electronics industry and in imaging applications. In the last decade there has been renewed interest in these materials because of their unique optical nonlinear and midinfared properties. An optical material is said to be nonlinear if its optical properties depend on the intensity of the light, an effect that can lead to all-optical switching. The chalcogenide's nonlinear optical properties are not only very strong (hundreds of times that of conventional glass), but also extremely fast (on the order of 10s of femtoseconds—the time it takes for light to travel only a fraction of a millimeter). The fast and strong nonlinearity of chalcogenides makes them attractive as ultrafast nonlinear devices, which can operate much faster than state-of-the-art electronics, or in efficient frequency conversion schemes. In contrast to conventional glass, chalcogenide glasses are transmissive well into the mid-infrared region (e.g. sulphides transmit to ~11um) and are photosensitive to visible light.

This special issue reviews recent progress in this field with 13 invited articles from the leading groups in this field. This issue is comprehensive with articles that can be categorized into a number of areas: (i) chalcogenide material and device science, (ii) device fabrication, (iii) applications in nonlinear optics, and (iv) sensing applications.

KEY FINDINGS AND SELECTED PAPERS

The following papers are some of the highlights of the Optics Express focus issue on Chalcogenide Photonics. All are included in volume 18, issue 25 and can be accessed online at http://www.OpticsInfoBase.org/OE.

A paper from Yokohama National University in Japan and the Japan Science and Technology Agency reports massive optical nonlinearity in chalcogenide photonic crystal waveguides and demonstrates highly efficient nonlinear processes.

"Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides." Keijiro Sukuzi, Toshihiko Baba, Yokohama National University, Japan Science and Technology Agency, p. 26675. (See: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26675.)

A team of researchers from five institutions in the U.S. and Italy report on novel sensing architectures for mid infrared wavelengths using chalcogenide waveguide resonators. They exploit the chalcogenide photosensitivity to post-trim resonators and compensate for fabrication imperfections.

"Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges." Nathan Carlie et al., p. 26728 (See: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26728.)

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/OE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>