Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics Express focus issue on chalcogenide photonics: Fabrication, devices and applications

07.12.2010
Recent progress in chalcogenide glass photonics has been driven by scientific and technological challenges in a variety of areas.

These range from increased demand for bandwidth in optical communications, to the emergence of bio-health hazards associated with hazardous microorganisms that absorb at mid-infrared wavelengths, to defense applications that require bright mid-infrared sources.

Additionally, chalcogenide glass provides a platform for fundamental investigations of light-matter interactions in nanophotonic structures, such as photonic crystals and metamaterials. To highlight breakthroughs in this area, Optics Express today published a special focus issue on Chalcogenide Photonics: Fabrication, Devices and Applications (http://www.opticsinfobase.org/oe/issue.cfm?volume=18&issue=25).

The issue was organized and edited by Benjamin Eggleton, director of the Australian Research Council's Centre for Ultrahigh-bandwidth Devices for Optical Systems and professor at the University of Sydney.

"This focus issue was created with the intent to represent the current state-of-the-art in the field of chalcogenide photonics," said Eggleton. "The combination of their unique optical properties with the flexibility in tailoring the composition and fabrication methodology makes the chalcogenides compelling for photonics research and has stimulated research groups around the world to actively pursue this vibrant area."

SUMMARY

Chalcogenide glasses contain as a major constituent one or more of the chalcogen elements from the periodic table (i.e. Sulphur, Selenium and Tellurium, but excluding Oxygen) covalently bonded to other elements such as As, Ge, Sb, Ga, Si, or P. Chalcogenide glasses have been studied since the 1950s due to their amazing optical properties. They have already found important applications in a number of areas, including the electronics industry and in imaging applications. In the last decade there has been renewed interest in these materials because of their unique optical nonlinear and midinfared properties. An optical material is said to be nonlinear if its optical properties depend on the intensity of the light, an effect that can lead to all-optical switching. The chalcogenide's nonlinear optical properties are not only very strong (hundreds of times that of conventional glass), but also extremely fast (on the order of 10s of femtoseconds—the time it takes for light to travel only a fraction of a millimeter). The fast and strong nonlinearity of chalcogenides makes them attractive as ultrafast nonlinear devices, which can operate much faster than state-of-the-art electronics, or in efficient frequency conversion schemes. In contrast to conventional glass, chalcogenide glasses are transmissive well into the mid-infrared region (e.g. sulphides transmit to ~11um) and are photosensitive to visible light.

This special issue reviews recent progress in this field with 13 invited articles from the leading groups in this field. This issue is comprehensive with articles that can be categorized into a number of areas: (i) chalcogenide material and device science, (ii) device fabrication, (iii) applications in nonlinear optics, and (iv) sensing applications.

KEY FINDINGS AND SELECTED PAPERS

The following papers are some of the highlights of the Optics Express focus issue on Chalcogenide Photonics. All are included in volume 18, issue 25 and can be accessed online at http://www.OpticsInfoBase.org/OE.

A paper from Yokohama National University in Japan and the Japan Science and Technology Agency reports massive optical nonlinearity in chalcogenide photonic crystal waveguides and demonstrates highly efficient nonlinear processes.

"Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides." Keijiro Sukuzi, Toshihiko Baba, Yokohama National University, Japan Science and Technology Agency, p. 26675. (See: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26675.)

A team of researchers from five institutions in the U.S. and Italy report on novel sensing architectures for mid infrared wavelengths using chalcogenide waveguide resonators. They exploit the chalcogenide photosensitivity to post-trim resonators and compensate for fabrication imperfections.

"Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges." Nathan Carlie et al., p. 26728 (See: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26728.)

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/OE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>