Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics Express focus issue on chalcogenide photonics: Fabrication, devices and applications

07.12.2010
Recent progress in chalcogenide glass photonics has been driven by scientific and technological challenges in a variety of areas.

These range from increased demand for bandwidth in optical communications, to the emergence of bio-health hazards associated with hazardous microorganisms that absorb at mid-infrared wavelengths, to defense applications that require bright mid-infrared sources.

Additionally, chalcogenide glass provides a platform for fundamental investigations of light-matter interactions in nanophotonic structures, such as photonic crystals and metamaterials. To highlight breakthroughs in this area, Optics Express today published a special focus issue on Chalcogenide Photonics: Fabrication, Devices and Applications (http://www.opticsinfobase.org/oe/issue.cfm?volume=18&issue=25).

The issue was organized and edited by Benjamin Eggleton, director of the Australian Research Council's Centre for Ultrahigh-bandwidth Devices for Optical Systems and professor at the University of Sydney.

"This focus issue was created with the intent to represent the current state-of-the-art in the field of chalcogenide photonics," said Eggleton. "The combination of their unique optical properties with the flexibility in tailoring the composition and fabrication methodology makes the chalcogenides compelling for photonics research and has stimulated research groups around the world to actively pursue this vibrant area."

SUMMARY

Chalcogenide glasses contain as a major constituent one or more of the chalcogen elements from the periodic table (i.e. Sulphur, Selenium and Tellurium, but excluding Oxygen) covalently bonded to other elements such as As, Ge, Sb, Ga, Si, or P. Chalcogenide glasses have been studied since the 1950s due to their amazing optical properties. They have already found important applications in a number of areas, including the electronics industry and in imaging applications. In the last decade there has been renewed interest in these materials because of their unique optical nonlinear and midinfared properties. An optical material is said to be nonlinear if its optical properties depend on the intensity of the light, an effect that can lead to all-optical switching. The chalcogenide's nonlinear optical properties are not only very strong (hundreds of times that of conventional glass), but also extremely fast (on the order of 10s of femtoseconds—the time it takes for light to travel only a fraction of a millimeter). The fast and strong nonlinearity of chalcogenides makes them attractive as ultrafast nonlinear devices, which can operate much faster than state-of-the-art electronics, or in efficient frequency conversion schemes. In contrast to conventional glass, chalcogenide glasses are transmissive well into the mid-infrared region (e.g. sulphides transmit to ~11um) and are photosensitive to visible light.

This special issue reviews recent progress in this field with 13 invited articles from the leading groups in this field. This issue is comprehensive with articles that can be categorized into a number of areas: (i) chalcogenide material and device science, (ii) device fabrication, (iii) applications in nonlinear optics, and (iv) sensing applications.

KEY FINDINGS AND SELECTED PAPERS

The following papers are some of the highlights of the Optics Express focus issue on Chalcogenide Photonics. All are included in volume 18, issue 25 and can be accessed online at http://www.OpticsInfoBase.org/OE.

A paper from Yokohama National University in Japan and the Japan Science and Technology Agency reports massive optical nonlinearity in chalcogenide photonic crystal waveguides and demonstrates highly efficient nonlinear processes.

"Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides." Keijiro Sukuzi, Toshihiko Baba, Yokohama National University, Japan Science and Technology Agency, p. 26675. (See: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26675.)

A team of researchers from five institutions in the U.S. and Italy report on novel sensing architectures for mid infrared wavelengths using chalcogenide waveguide resonators. They exploit the chalcogenide photosensitivity to post-trim resonators and compensate for fabrication imperfections.

"Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges." Nathan Carlie et al., p. 26728 (See: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26728.)

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/OE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>