Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics Express focus issue: Breakthroughs in unconventional polarization states of light

11.05.2010
It has been known for many years that careful control of the polarization of light can impact optics and photonics technologies. For example, tiny nanostructures are known to be able to capture light from a region much larger than their size if the polarization of the laser illumination is designed correctly.

Dark spots in a beam known as optical vortices can produce new and intriguing effects when used along with polarization control in a microscope. To highlight breakthroughs in this area, the editors of Optics Express, the Optical Society's (OSA) open-access journal, today published a special focus issue on Unconventional Polarization States of Light. The issue was organized and edited by Thomas G. Brown of the Institute of Optics at the University of Rochester and Qiwen Zhan of the University of Dayton.

"What once was a side curiosity of optics is now joining the mainstream, both in fundamental investigations and in applications," said Brown. "Research in this focus issue will cover polarization breakthroughs that have the potential to affect a broad range of disciplines – from nanomaterials to laser devices."

Summary

The polarization of light can play an important role in optical trapping, interaction with nanostructures, and focusing in microscopy. The seminal work in the mid-1990s by Colin Sheppard, now at the National University of Singapore, and Dennis G. Hall now at Vanderbilt University launched a flurry of studies in the last decade on the creation and focusing of polarized beams that have certain geometrical symmetries. Beams with a spoke-like 'radial' polarization were of particular interest because of their potential for creating small focal regions of axially polarized light, a key requirement for interacting with nanostructures and coupling to fields tightly confined to metal surfaces. For unconventional polarization states of light, the geometrical arrangement of the polarization can produce vortex behavior in beam propagation, a result that has intrigued physicists and changed how optical engineers think about illumination in microscopes and lithography systems. Meanwhile, the creation of unconventional polarization states within compact laser cavities has offered new ways to begin incorporating these states into more complex optical systems.

Key Findings & Selected Papers

The following papers are some of the highlights of the Optics Express focus issue on Unconventional Polarization States of Light. All are included in volume 18, issue 10 and can be accessed online at http://www.OpticsInfoBase.org/OE.

A paper from the Max Planck Institute describing the use of unconventional polarization states to probe the scattering properties of a single nanostructure, a result that will be of tremendous help in understanding more complex arrays, which have potential uses in metamaterials research.

"On the experimental investigation of the electric and magnetic response of a single nanostructure." Peter Banzer, Ulf Peschel, Susanne Quabis, and Gerd Leuchs, Max Planck Institute for the Science of Light. pp. 10905-10923.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10905

New research from the University of Dayton on the stable production of radial, azimuthal and other more complex vectorial beams from a fiber laser.

"Vectorial fiber laser using intracavity axial birefringence." Renjie Zhou, Joseph W. Haus, Peter E. Powers, and Qiwen Zhan, University of Dayton. pp. 10839-10847.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10839

A new paper from the University of Rochester that provides an experimental and theoretical analysis of laser beams that contain every possible state of polarization within the cross section of the beam, and the propagation laws that govern those beams.

"Full Poincaré beams." Amber M. Beckley, Thomas G. Brown, and Miguel Alonso, University of Rochester. pp. 10777-10785.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10777

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/OE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit http://www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>