Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics Express focus issue: Breakthroughs in unconventional polarization states of light

11.05.2010
It has been known for many years that careful control of the polarization of light can impact optics and photonics technologies. For example, tiny nanostructures are known to be able to capture light from a region much larger than their size if the polarization of the laser illumination is designed correctly.

Dark spots in a beam known as optical vortices can produce new and intriguing effects when used along with polarization control in a microscope. To highlight breakthroughs in this area, the editors of Optics Express, the Optical Society's (OSA) open-access journal, today published a special focus issue on Unconventional Polarization States of Light. The issue was organized and edited by Thomas G. Brown of the Institute of Optics at the University of Rochester and Qiwen Zhan of the University of Dayton.

"What once was a side curiosity of optics is now joining the mainstream, both in fundamental investigations and in applications," said Brown. "Research in this focus issue will cover polarization breakthroughs that have the potential to affect a broad range of disciplines – from nanomaterials to laser devices."

Summary

The polarization of light can play an important role in optical trapping, interaction with nanostructures, and focusing in microscopy. The seminal work in the mid-1990s by Colin Sheppard, now at the National University of Singapore, and Dennis G. Hall now at Vanderbilt University launched a flurry of studies in the last decade on the creation and focusing of polarized beams that have certain geometrical symmetries. Beams with a spoke-like 'radial' polarization were of particular interest because of their potential for creating small focal regions of axially polarized light, a key requirement for interacting with nanostructures and coupling to fields tightly confined to metal surfaces. For unconventional polarization states of light, the geometrical arrangement of the polarization can produce vortex behavior in beam propagation, a result that has intrigued physicists and changed how optical engineers think about illumination in microscopes and lithography systems. Meanwhile, the creation of unconventional polarization states within compact laser cavities has offered new ways to begin incorporating these states into more complex optical systems.

Key Findings & Selected Papers

The following papers are some of the highlights of the Optics Express focus issue on Unconventional Polarization States of Light. All are included in volume 18, issue 10 and can be accessed online at http://www.OpticsInfoBase.org/OE.

A paper from the Max Planck Institute describing the use of unconventional polarization states to probe the scattering properties of a single nanostructure, a result that will be of tremendous help in understanding more complex arrays, which have potential uses in metamaterials research.

"On the experimental investigation of the electric and magnetic response of a single nanostructure." Peter Banzer, Ulf Peschel, Susanne Quabis, and Gerd Leuchs, Max Planck Institute for the Science of Light. pp. 10905-10923.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10905

New research from the University of Dayton on the stable production of radial, azimuthal and other more complex vectorial beams from a fiber laser.

"Vectorial fiber laser using intracavity axial birefringence." Renjie Zhou, Joseph W. Haus, Peter E. Powers, and Qiwen Zhan, University of Dayton. pp. 10839-10847.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10839

A new paper from the University of Rochester that provides an experimental and theoretical analysis of laser beams that contain every possible state of polarization within the cross section of the beam, and the propagation laws that govern those beams.

"Full Poincaré beams." Amber M. Beckley, Thomas G. Brown, and Miguel Alonso, University of Rochester. pp. 10777-10785.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10777

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/OE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit http://www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>