Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics Express focus issue: Breakthroughs in unconventional polarization states of light

11.05.2010
It has been known for many years that careful control of the polarization of light can impact optics and photonics technologies. For example, tiny nanostructures are known to be able to capture light from a region much larger than their size if the polarization of the laser illumination is designed correctly.

Dark spots in a beam known as optical vortices can produce new and intriguing effects when used along with polarization control in a microscope. To highlight breakthroughs in this area, the editors of Optics Express, the Optical Society's (OSA) open-access journal, today published a special focus issue on Unconventional Polarization States of Light. The issue was organized and edited by Thomas G. Brown of the Institute of Optics at the University of Rochester and Qiwen Zhan of the University of Dayton.

"What once was a side curiosity of optics is now joining the mainstream, both in fundamental investigations and in applications," said Brown. "Research in this focus issue will cover polarization breakthroughs that have the potential to affect a broad range of disciplines – from nanomaterials to laser devices."

Summary

The polarization of light can play an important role in optical trapping, interaction with nanostructures, and focusing in microscopy. The seminal work in the mid-1990s by Colin Sheppard, now at the National University of Singapore, and Dennis G. Hall now at Vanderbilt University launched a flurry of studies in the last decade on the creation and focusing of polarized beams that have certain geometrical symmetries. Beams with a spoke-like 'radial' polarization were of particular interest because of their potential for creating small focal regions of axially polarized light, a key requirement for interacting with nanostructures and coupling to fields tightly confined to metal surfaces. For unconventional polarization states of light, the geometrical arrangement of the polarization can produce vortex behavior in beam propagation, a result that has intrigued physicists and changed how optical engineers think about illumination in microscopes and lithography systems. Meanwhile, the creation of unconventional polarization states within compact laser cavities has offered new ways to begin incorporating these states into more complex optical systems.

Key Findings & Selected Papers

The following papers are some of the highlights of the Optics Express focus issue on Unconventional Polarization States of Light. All are included in volume 18, issue 10 and can be accessed online at http://www.OpticsInfoBase.org/OE.

A paper from the Max Planck Institute describing the use of unconventional polarization states to probe the scattering properties of a single nanostructure, a result that will be of tremendous help in understanding more complex arrays, which have potential uses in metamaterials research.

"On the experimental investigation of the electric and magnetic response of a single nanostructure." Peter Banzer, Ulf Peschel, Susanne Quabis, and Gerd Leuchs, Max Planck Institute for the Science of Light. pp. 10905-10923.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10905

New research from the University of Dayton on the stable production of radial, azimuthal and other more complex vectorial beams from a fiber laser.

"Vectorial fiber laser using intracavity axial birefringence." Renjie Zhou, Joseph W. Haus, Peter E. Powers, and Qiwen Zhan, University of Dayton. pp. 10839-10847.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10839

A new paper from the University of Rochester that provides an experimental and theoretical analysis of laser beams that contain every possible state of polarization within the cross section of the beam, and the propagation laws that govern those beams.

"Full Poincaré beams." Amber M. Beckley, Thomas G. Brown, and Miguel Alonso, University of Rochester. pp. 10777-10785.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10777

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/OE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit http://www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>