Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics Express focus issue: Breakthroughs in unconventional polarization states of light

11.05.2010
It has been known for many years that careful control of the polarization of light can impact optics and photonics technologies. For example, tiny nanostructures are known to be able to capture light from a region much larger than their size if the polarization of the laser illumination is designed correctly.

Dark spots in a beam known as optical vortices can produce new and intriguing effects when used along with polarization control in a microscope. To highlight breakthroughs in this area, the editors of Optics Express, the Optical Society's (OSA) open-access journal, today published a special focus issue on Unconventional Polarization States of Light. The issue was organized and edited by Thomas G. Brown of the Institute of Optics at the University of Rochester and Qiwen Zhan of the University of Dayton.

"What once was a side curiosity of optics is now joining the mainstream, both in fundamental investigations and in applications," said Brown. "Research in this focus issue will cover polarization breakthroughs that have the potential to affect a broad range of disciplines – from nanomaterials to laser devices."

Summary

The polarization of light can play an important role in optical trapping, interaction with nanostructures, and focusing in microscopy. The seminal work in the mid-1990s by Colin Sheppard, now at the National University of Singapore, and Dennis G. Hall now at Vanderbilt University launched a flurry of studies in the last decade on the creation and focusing of polarized beams that have certain geometrical symmetries. Beams with a spoke-like 'radial' polarization were of particular interest because of their potential for creating small focal regions of axially polarized light, a key requirement for interacting with nanostructures and coupling to fields tightly confined to metal surfaces. For unconventional polarization states of light, the geometrical arrangement of the polarization can produce vortex behavior in beam propagation, a result that has intrigued physicists and changed how optical engineers think about illumination in microscopes and lithography systems. Meanwhile, the creation of unconventional polarization states within compact laser cavities has offered new ways to begin incorporating these states into more complex optical systems.

Key Findings & Selected Papers

The following papers are some of the highlights of the Optics Express focus issue on Unconventional Polarization States of Light. All are included in volume 18, issue 10 and can be accessed online at http://www.OpticsInfoBase.org/OE.

A paper from the Max Planck Institute describing the use of unconventional polarization states to probe the scattering properties of a single nanostructure, a result that will be of tremendous help in understanding more complex arrays, which have potential uses in metamaterials research.

"On the experimental investigation of the electric and magnetic response of a single nanostructure." Peter Banzer, Ulf Peschel, Susanne Quabis, and Gerd Leuchs, Max Planck Institute for the Science of Light. pp. 10905-10923.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10905

New research from the University of Dayton on the stable production of radial, azimuthal and other more complex vectorial beams from a fiber laser.

"Vectorial fiber laser using intracavity axial birefringence." Renjie Zhou, Joseph W. Haus, Peter E. Powers, and Qiwen Zhan, University of Dayton. pp. 10839-10847.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10839

A new paper from the University of Rochester that provides an experimental and theoretical analysis of laser beams that contain every possible state of polarization within the cross section of the beam, and the propagation laws that govern those beams.

"Full Poincaré beams." Amber M. Beckley, Thomas G. Brown, and Miguel Alonso, University of Rochester. pp. 10777-10785.

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-10777

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/OE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit http://www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>