Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optics: A step in time saves two

18.07.2013
A technique that reduces the time to simulate the operation of active optical devices aids the design of nanoscale lasers

Tiny optical components - the heart of modern communications systems - might one day increase the operational speed of computers. When designing these components, optical engineers rely on mathematical simulations to predict the performance and efficiency of potential devices. Now, Qian Wang at the A*STAR Data Storage Institute and co©workers have developed a neat mathematical trick that more than doubles the speed of this usually slow computation1. Their method also enables more accurate modeling of increasingly complicated structures.


An efficient FDTD simulation can quickly calculate the electric and magnetic field patterns inside a nanocavity laser. © 2012 IEEE

In the mid-nineteenth century, the physicist James Maxwell established a set of equations that describe the flow of light. The oscillating electric and magnetic fields of an optical pulse react to the optical properties of the medium through which it is travelling. "Combining Maxwell's equations with equations that describe light¨Cmatter interactions can provide a powerful simulation platform for optoelectronic devices," explains Wang. "However, running the computations is usually time-consuming."

Finite-difference time-domain (FDTD) simulations are a well-established method for modeling the flow of light in optical devices. This technique models a device as a grid of points and then calculates the electric and magnetic fields at each position using both Maxwell's equations and knowledge of the fields at neighboring points. Similarly, calculating the time evolution of light using Maxwell's equations is simplified by considering discrete temporal steps. Smaller spatial and temporal steps yield more accurate results but at the expense of a longer calculation time.

Electron density in a semiconductor is a key determiner of a material's optical properties. This density varies at a slower rate than the electric and magnetic fields of the optical pulse. Wang and his colleagues therefore eliminated calculation of this material property at every time step to shorten the calculation.

The researchers proved the usefulness of their approach by modeling a semiconductor laser, consisting of a cylindrical cavity 2 micrometers in diameter that traps light at its edges (see image). The trapped light supplies the optical feedback required for lasing. They simulated the operation of this device using an FDTD spatial grid with a 20-nanometer resolution and 0.033 femtosecond time steps. The calculated field pattern in the cavity was the same whether the active optical properties of the semiconductor were calculated at every time increment, or once every 100 steps. Yet, this simplification reduced the computation time by a factor of 2.2.

"Currently we are applying our approach to design integrated nanolasers as a next-generation on-chip light source for various applications," says Wang.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

References
Ravi, K., Wang, Q. & Ho, S.-T. Efficient FDTD simulation of active photonic devices with multiple temporal resolutions. IEEE Photonics Technology Letters 24, 584¨C586 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6702
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>