Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical wireless nanoantenna link

04.07.2014

Mobilfunkanbieter übertragen die Handygespräche zwischen ihren Sendemasten mittels Richtantennen. Diese Richtfunkverbindungen erkennt man an den kleinen runden Parabolschüsseln unterhalb der länglichen Antennen, die mit den Handys kommunizieren.

Wieso verbindet man die Mobilfunkmasten untereinander nicht mit Kabeln? Grund dafür ist die Tatsache, dass Datenübertragung über weite Strecken bei Gigahertz-Frequenzen weniger Verluste bei Freistrahlübertragung über Antennen aufweist als in Koaxial-Kabelleitungen.


Conceptual image of wireless optical data transmission between two optical nanoantennas (gold colored) by light (red color)

Universität Stuttgart, Physikalisches Institut

Der physikalische Grund liegt im exponentiellen Abfallen der Leistung in einem Kabel, während eine Richtfunkstrecke durch die Luft nur mit einem Potenzgesetz (die Leistung sinkt mit dem Quadrat des Abstandes) abfällt.

Dieses Konzept haben jetzt Wissenschaftler vom 4. Physikalischen Institut der Universität Stuttgart in enger Zusammenarbeit mit dem Max-Planck-Institut für Festkörperforschung und der Carl Zeiss AG in Oberkochen in den optischen Frequenzbereich übertragen. Sie demonstrieren erstmals die Datenübertragung über eine längere Strecke mit Licht, das zwei optische Nanoantennen verbindet.

Das ganze funktioniert bis zu Distanzen von einigen 10 Mikrometern. Indem die Phasen eines ganzen Antennenfeldes einjustiert werden, gelingt ihnen sogar eine Steuerung des Abstrahlwinkels, ganz analog zu einem phasengesteuerten Radar in einer Flugzeugnase.

Dazu entwickelten die Forscher ein besonderes Abbildungsverfahren, das auf photolumineszierenden Farbstoffen, die die Antennen überdecken, beruht. Durch ein Mikroskop kann die ganze Anordnung sehr elegant abgebildet werden. Zur Richtungssteuerung wurde der Phasenverlauf der Wellenfront unter einem Mikroskopobjektiv ausgenutzt.

Das Konzept könnte helfen, in Zukunft Datenverbindungen, die auf optischen Signalen basieren, schneller von Punkt zu Punkt zu übertragen und diese Verbindungen auch umzuschalten, indem man die Antennen in andere Richtungen abstrahlen läßt. Eine mögliche einstellbare Chip-zu-Chip Kommunikation auf zukünftigen Computerplatinen könnte dadurch ermöglicht werden.

Doktorand Daniel Dregely, der gerade von der Deutschen Gesellschaft für Angewandte Optik mit dem DGAO Nachwuchspreis 2014 für die beste Dissertation ausgezeichnet wurde, hat die Ergebnisse am 4. Physikalischen Institut der Universität Stuttgart unter der Leitung von Prof. Harald Giessen erzielt.

Am Projekt beteiligt waren auch Prof. Nader Engheta von der University of Pennsylvania, Postdoc Dr. Klas Lindfors vom MPI FKF (der gerade einen Ruf auf eine Juniorprofessur der Universität zu Köln angenommen hat) sowie Juniorprofessor Dr. Markus Lippitz vom MPI FKF (der gerade einen Ruf auf einen Lehrstuhl an die Universität Bayreuth angenommen hat).

Unterstützung bei der Lösung des Problems der Phasensteuerung kam von Dr. Michael Totzeck aus der zentralen Forschung der Carl Zeiss AG in Oberkochen, der ebenfalls Honorarprofessor an der Universität Konstanz ist.

Das Projekt wurde finanziell von der DFG, dem BMBF, der Baden-Württemberg-Stiftung, sowie einem ERC Advanced Grant der EU unterstützt.


Publication in Nature Communications
D. Dregely et al., Nature Communications 2014, doi: 10.1038/ncomms5354
“Imaging and steering an optical wireless nanoantenna link”

Kontakt:

Dr. Hans-Herwig Geyer, Universität Stuttgart, Leiter Hochschulkommunikation und Pressesprecher,
Tel. 0711/685-82555, E-Mail: hans-herwig.geyer [at] hkom.uni-stuttgart.de

Univ.-Prof. Harald Gießen, Universität Stuttgart, Physikalisches Institut, Tel. 0711/685-65111, E-Mail: harald.giessen [at] physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>