Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical quantum transistor using single atoms

13.05.2010
Physicists at MPQ control the optical properties of a single atom!

Due to the continued miniaturization of computer chip components, we are about to cross a fundamental boundary where technology can no longer rely on the laws of the macroscopic world. With this in mind, scientists all over the world are researching technologies based on quantum effects that can be used to communicate and process information.

One of the most promising developments in this direction are quantum networks in which single photons communicate the information between different nodes, e.g. single atoms. There the information can be stored and processed. A key element in these systems is Electromagnetically Induced Transparency (EIT), an effect that allows to radically change the optical properties of an atomic medium by means of light.

Previously, scientists have studied this effect and its amazing properties, using atomic ensembles with hundreds of thousands of atoms. Now, scientists in the group of Prof. Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics (MPQ) in Garching and Head of the Quantum Dynamics Division, have managed to control the optical response of a single atom using laser light (Nature, Advanced Online Publication, DOI: 10.1038 /nature09093 May 2010). While representing a corner stone in the development of new quantum based technologies, these results are also fundamental for the understanding of how the quantum behaviour of single atoms can be controlled with light.

Electromagnetically Induced Transparency (EIT) describes the effect, that the interaction of an atomic medium with a weak laser field can be controlled and manipulated coherently with a second, strong laser field. Practically, this is achieved by irradiating the medium with two laser beams: the action of a strong control laser causes the medium to become transparent for a weak probe laser. The properties derived from EIT allow the storing and retrieval of information between an atomic sample and light pulses, thus providing a powerful interface between photonic information and stationary atoms.

In all experiments performed so far, the medium was made of a very large number of atoms. In contrast, in the experiment described here only a single Rubidium atom is addressed. The atom is trapped inside a high-finesse optical cavity in order to amplify the atom-light interaction such that atom and cavity form a strongly coupled system. Then the transmission of laser light – the probe laser – incident on the cavity axis is measured. When there is no atom inside the cavity, the laser light is transmitted. On the other hand, the presence of the atom causes the light to be reflected, and the transmission drops (see Fig. 1a). With an additional control laser of very high intensity applied transverse to the cavity axis, the single-atom EIT condition is achieved and maximum transmission is recovered (See Fig. 1b). The single atom effectively acts as a quantum optical transistor, coherently controlling the transmission of light through the cavity.

In addition, the team of Prof. Rempe succeeded in performing EIT experiments when more atoms were added inside the cavity, one by one in a very controlled way. “Using EIT with a controlled number of atoms provides the possibility to manipulate many quantum properties of light fields transmitted by the cavity”, says Martin Mücke, who works on this experiment as a doctoral student. “Usually photons don’t interact with each other. With this scheme we may be able to achieve a long sought goal: strong interaction between photons, mediated by a single atom. Such a set-up is a potential building block for a working quantum computer.” Olivia Meyer-Streng

Original publication:
Electromagnetically induced transparency with single atoms in a cavity
M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas and G. Rempe.

Nature, Advance Online Publication, DOI: 10.1038/nature09093, May 2010

Contact:
Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 – 311
e-mail: gerhard.rempe@mpq.mpg.de
Dr. Eden Figueroa
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 241
e-mail: eden.figueroa@mpq.mpg.de
Dipl. Phys. Martin Mücke
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 356
e-mail: martin.muecke@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>