Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical flash from the "naked-eye" gamma-ray burst detected by the smallest telescope "Pi of the Sky"

11.09.2008
On 19-03-2008 polish robotic telescope registered the brightest ever observed optical burst from the distant Universe. The results have just been published in the renowned scientific journal "Nature"

Detection of the optical flash from the gamma-ray burst coming simultaneously with gamma-rays by small telescopes, Pi of the Sky, TORTORA and RAPTOR provides new clues for understanding the physics of the most powerful cosmic explosions and proves potential of continuous sky monitoring by detectors of a new type.

Every night several dozens of robotic telescopes monitor the night sky looking for interesting astrophysical phenomena. The day 2008.03.19 was unusual for some of them. At 2:19 a.m. EDT the NASA Swift satellite detected gamma rays from a powerful explosion in the constellation Bootes. This event, named GRB 080319B, probably originated from a violent death of a super-massive star in a so-called hypernova explosion ending with a black-hole creation. It happened 7.5 billion light years from the Earth, halfway across the visible Universe.

In a paper to appear in Thursday's September 11th issue of the journal Nature, a team of 92 authors, including 10 members of the "Pi of the Sky" team from Poland, report observations across the spectrum gathered by a simultaneous effort of many research groups. Swift, "Pi of the Sky", the Russian KONUS detector on NASA's Wind satellite and optical camera TORTORA, run by a Russian-Italian collaboration together with a handful of large telescopes conducted observations that began 30 minutes before the explosion and followed its afterglow for months. The equipment which was used to gather the precise data varied from very small to very large. Large telescopes can provide detailed information about the spectrum and measure the distance to burst. Small telescopes can continuously monitor the whole sky. They are the first to see unusual phenomena, which was famously demonstrated with GRB080319B.

Such explosions are observed about a hundred times per year and are known as gamma-ray burst, since they are observed mainly in gamma rays. GRB 080319B was unusually strong among them. It proved to be exceptional in one more aspect: the burst in gamma rays was accompanied by an optical flash, which - for a few seconds - could have been seen even by a naked human eye, if somebody had happened to look in its direction. For the first time the light was recorded by optical telescopes with fast cameras. The first to detect the optical light of GRB 080319B, simultaneously with the detection of gamma rays by Swift, was "Pi of the Sky".

The "Pi of the Sky" apparatus, located at the Las Campanas Observatory in Chile is operated by a consortium of Polish institutes. Its telescope has a diameter of 71 mm only. However, it was designed precisely for events like this one. The apparatus monitors continuously large fraction of the sky taking 10 s exposures and detects optical flashes independently, while the satellite information confirms the origin of the flash. This strategy made an early optical detection of GRB 080319B possible.

During the night of 2008.03.18/19 "Pi of the Sky" was routinely monitoring the sky looking in the same direction as the Swift satellite and taking 10 s long images. The image stated at 6:12:47 UT showed a new object. It was automatically detected by the burst recognition algorithm. At 6:12:49 UT Swift received the first gamma rays. This moment marked as T=0 stands for the beginning of the burst. Only two seconds later (T0+2s) another robotic telescope RAPTOR took an image of the object. At T0+16s the object became visible to TORTORA optical camera which made a wonderful movie of the peak of the burst with high temporal resolution. At T0+17s Swift sent out the alert about the burst and many telescopes on the ground turned towards the target. Swift's on-board telescope UVOT begin observation at T0+51s. One hour later the Very Large Telescope in Chile measured the distance to the burst, which was confirmed by the Hobby-Eberly Telescope in Texas.

Next day, it was already clear that a new important step towards understanding of physics of gamma-ray bursts has been made. It was a matter of a long lasting discussion whether the optical afterglow of a gamma-ray burst appears simultaneously with the gamma rays. In most of the presently accepted models gamma rays and optical light originate from a thin jet of matter escaping from an exploding star. However, it was not clear whether both types of radiation are produced by the same process at the same place. The simultaneous detection of both explosions - optical and gamma - has proven that indeed, they come from the same region. However, surprisingly enough, "Pi of the Sky" measured, that the intensity of the optical light is 10000 higher compared to gamma rays. This menas, that they cannot be produced in the same process.

These observations challenge many existing models and opens a new perspective for understanding the physics of the most powerful explosions in the Universe. In the Thursday's Nature Racusin and collaborators explain unexpected features of GRB 080319B, suggesting that its jet directed toward Earth contained an ultra-fast component just 0.4 degree across and this core resided within a slightly less energetic jet about 20 times wider.

Interestingly, the publication of the results of observations of GRB 080319B comes in time with the start-up of the Large Hadron Collider (LHC) - the world's largest particle accelerator at CERN, in which some members of the "Pi of the Sky" projects are also involved. Thus, a new area of investigations of the biggest and smallest explosions in the Universe is now being opened simultaneously underlying complementarity of space and laboratory observations.

So far "Pi of the Sky" apparatus consisted of two cameras installed in Las Campanas Observatory in Chile. They cover 20°x20° of the sky. To increase the chance of observing a GRB a new set of 32 cameras is under construction. They will cover 1/3 of the visible sky continuously. Original plan was to cover p steradians of the sky, justifying the name for the project. The name recalls also the title of John Barrow's book "Pi in the sky" arguing that the phenomena we observe are governed by physical laws expressed in mathematical language. "Pi of the Sky" is a member of a growing family of small, low-cost, robotic devices, like BOOTES, MASTER, RAPTOR, REM/TORTORA, ROTSE, SkyNet, TAROT and many others, which night by night patiently follow the sky searching for prey like the extraordinary bright gamma ray burst. Sophisticated technology allows them to operate almost without human intervention. Everything, starting from weather control, through target selection, till self diagnostics and repair, is performed automatically.

The idea of continuous monitoring of the whole sky was advanced by a late professor Bogdan Paczynski, a renown Polish astrophysicist working at the Princeton University. He also postulated to use wide field robotic telescopes for early optical observations of gamma ray bursts, this idea was finally confirmed by extraordinary observations of GRB 080319B. The number of robotic telescopes increases every year and their results are becoming more and more important. We can expect much more exciting discoveries from automatic observatories in next years.

The project is conducted by collaboration of Polish research institutes:

* Soltan Institute for Nuclear Studies (Warsaw)
* Center for Theoretical Physics PAS (Warsaw)
* University of Warsaw
* Warsaw University of Technology
* Space Research Center PAS (Warsaw)
* University of Cardinal Stefan Wyszynski (Warsaw)
* Pedagogical University of Cracow
For related images, animations and supplementary information, please visit: http://grb.fuw.edu.pl/pi/pr/ or contact:
Lech Mankiewicz
Center for Theoretical Physics
of the Polish Academy of Sciences, Warsaw, Poland
+48 502 895 311
lech@cft.edu.pl
Grzegorz Wrochna
the Andrzej Soltan Institute for Nuclear Studies, Warsaw, Poland
+48 609 339 449
wrochna@ipj.gov.pl
Aleksander Filip Zarnecki
Institute for Experimental Physics, University of Warsaw, Poland
+48 694 483 053
zarnecki@fuw.edu.pl

Marek Pawlowski | alfa
Further information:
http://www.ipj.gov.pl
http://grb.fuw.edu.pl/pi/pr/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>