Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opportunity on verge of new discovery

15.09.2011
Mars rover poised on rock that may yield yet more evidence of a wet Mars

Shortly after Labor Day 2011, the Mars rover Opportunity was poised on the rim of the 22,000 meter-wide Endeavour Crater, preparing to sample a novel rock type. Much older than the sedimentary samples the rover’s “tasted” so far, this new sample is flush with the promise of revealing clues to the planet’s environment when running rivers coursed the surface.


NASA
Pancam false color mosaic of the rock target Chester Lake, acquired on sol 2709 (the 2,709th day of Opportunity’s mission). This rock, located on Cape York, on the edge of the Endeavour crater, is a breccia in which various rock fragments have been cemented together in a finer-grained matrix, probably during formation of the Endeavour crater billions of years ago. Opportunity is about to make in-situ measurements of this rock which will determine whether it contains clay minearals formed in the presence of water.

What was supposed to have been a 90- to 180-day exploration of two distinct regions of the red planet has turned into a saga that has become one of science’s most compelling and long-lasting adventures (now into its eighth year), enthralling the public and the science communities alike.

Launched the summer of 2003 and landing in January 2004, the solar-powered Mars Exploration Rovers (MER) Spirit and Opportunity completed their intended basic missions in April 2004. Each continued roving until March 2010, when Spirit, mired in unexpected but scientifically interesting martian sand and pointed in an unfavorable direction to survive the winter dark, gave up the ghost.

Opportunity, on the other hand, remains active, having reached the rim of Endeavour Crater Aug. 9, 2011, knocking at the door of geology different from any it has explored during its first seven-plus years on Mars.

“Opportunity now is in a brand new mission,” says Raymond E. Arvidson, PhD, the James S. McDonnell Distinguished University Professor in Arts & Sciences at WUTL, and MER deputy principal investigator. “In late August, we looked at a rock named Tisdale, with a composition unlike any we’ve seen before. It has an enormous amount of zinc, bromine, phosphorus, chlorine, and sulfur, all elements that are mobile in the presence of water.

“The ancient rim of Endeavour represents a period when there was probably a lot more water on the surface,” Arvidson says. “So, we’re trying to get the chemical, mineralogical and geological setting to ‘back out’ those ancient conditions to reconstruct environmental conditions during this earlier time period.”

The conditions that formed the sandstones Opportunity has sampled over the past seven years represent a kind of drying-out period of Mars. Occasionally wet but usually dry and wind-blown, the sulphur-rich mineral grains formed vast dune fields that were cemented into sandstone over millions of years by occasional seeping groundwater.

But the terrain Opportunity now is sampling — largely buried by lake bed sediments — pops up in places like Endeavour rim and is much older, going back to the earliest days of the planet. That’s some 3.5 to 4 billion years ago in the last stages of heavy bombardment, when Mars was sweeping up the last planetessimals — cosmic dust grains that collided and stuck to each other to form larger bodies. Endeavour is an impact crater produced during that heavy bombardment period.

Arvidson and his WUSTL colleagues also are part of the Compact Imaging Spectrometer for Mars (CRISM) team of the Mars Reconnaissance Orbiter, a craft orbiting Mars with sophisticated instrumentation that helps Arvidson and other NASA scientists determine where Opportunity should try to go next. The CRISM instrument provides spectral information on martian rocks at a super-high resolution that is processed and analyzed at WUSTL.

CRISM spectral data and other orbital data on the part of the Endeavour crater rim named Cape York indicated a good possibility that clay minerals would be found there.

“Clays form in more neutral, less acidic conditions than the sulfate-rich sandstones we’ve been looking at,” Arvidson says. “Our hypothesis is that if there are clay minerals, the water was less acidic and therefore more conducive to life. The presence of zinc, bromine, phosphorus, chlorine, and sulfur in the Tisdale rock is exciting in that it points toward water moving through and altering the rock, although we have no evidence for clay minerals in Tisdale. Further, the Tisdale surfaces were very rough and we were unable to make use of the Rock Abrasion Tool (RAT) to clean off the surfaces to expose fresh materials.

“Thus, we moved on and are now in the thick of the hunt to find these elusive clay minerals by traversing to other rock targets and making detailed measurements, including making chemical and mineralogical observations of natural, brushed, and ground surfaces. The rock Opportunity is sitting over currently is called Chester Lake and will be our first target in which we will use the RAT to progressively expose deeper and deeper surfaces,” Arvidson says.

The key Opportunity instrument to verify the presence of what Arvidson thinks are iron-bearing clays is the Mössbauer spectrometer. This instrument measures the abundance of iron-bearing minerals in martian rocks and soil by probing tiny changes in the energy levels of the iron atomic nucleus in response to its environment. The Mössbauer spectrometer illuminates a rock with a radioactive source of gamma rays tuned to the energy levels in the iron nucleus and then uses the energies of the returning gamma rays to determine the abundance of iron-bearing minerals in the surface rocks.

Because Opportunity’s arm cannot move side to side due to a broken actuator, Arvidson and team members drive the vehicle to a spot where the arm can still place the RAT and in-situ instruments onto the surface.

Opportunity's mast-mounted emission spectrometer is no longer working, and the steering on one of the wheels is rotated in a bit. But Arvidson says the engineering and science teams have met every challenge through diligence and guarded optimism.

“Opportunity is just a really well-made vehicle,” Arvidson says. “It’s way, way beyond warranty. It was supposed to drive about 600 meters and so far it’s gone 33,500 meters in round numbers, and has taken maybe 150,000 pictures by now.

“It’s well-made and has a dedicated team that has eked out every ounce of science that we can get from it. Plus, we’ve been lucky and landed on a terrain that has rocks that contain detailed clues on past environmental conditions,” he says.

“Stay tuned, we have a new mission and expect to make yet more exciting discoveries about the red planet.”

Diana Lutz | EurekAlert!
Further information:
http://news.wustl.edu/news/Pages/22660.aspx
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>