Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening the gate to robust quantum computing

10.04.2012
A team led by an Ames Laboratory scientist develops new technique
for solid-state quantum information processing
Scientists have overcome a major hurdle facing quantum computing: how to protect quantum information from degradation by the environment while simultaneously performing computation in a solid-state quantum system. The research was reported in the April 5 issue of Nature.

A group led by U.S. Department of Energy’s Ames Laboratory physicist Viatsheslav Dobrovitski and including scientists at Delft University of Technology; the University of California, Santa Barbara; and University of Southern California, made this big step forward on the path to using the motions of single electrons and nuclei for quantum information processing. The discovery opens the door to robust quantum computation with solid-state devices and using quantum technologies for magnetic measurements with single-atom precision at nanoscale.

Quantum information processing relies on the combined motion of microscopic elements, such as electrons, nuclei, photons, ions, or tiny oscillating joists. In classical information processing, information is stored and processed in bits, and the data included in each bit is limited to two values (0 or 1), which can be thought of as a light switch being either up or down. But, in a quantum bit, called a qubit, data can be represented by how these qubits orient and move in relationship with each other, introducing the possibility for data expression in many tilts and movements.

This power of quantum information processing also poses a major challenge: even a minor “bump” off course causes qubits to lose data. And qubits tend to interact quite sensitively with their environment, where multiple forces bump them off track.

But, because the key to quantum information processing is in the relationship between qubits, the solution is not as easy as isolating a single qubit from its environment.

“The big step forward here is that we were able to decouple individual qubits from the environment, so they retain their information, while preserving the coupling between the qubits themselves” said Dobrovitski.

Solid-state hybrid systems are useful for quantum information processing because they are made up of different types of qubits that each perform different functions, much like different parts of a car combine to move it down the road. In the case of Dobrovitski’s work, the hybrid system includes magnetic moments of an electron and a nucleus.

“This type of hybrid system may be particularly good for quantum information processing because electrons move fast, can be manipulated easily, but they also lose quantum information quickly. Nuclei move very slow, are difficult to manipulate, but they also retain information well,” said Dobrovitski. “You can see an analogy between this hybrid quantum system and the parts of a classical computer: the processor works fast but doesn’t keep information long, while the memory works slowly but stores information for a long time.”

Usually, when you decouple qubits from their environment to protect their quantum data, you decouple them from everything, even from each other.

Breehan Gerleman Lucchesi | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>