Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening the gate to robust quantum computing

10.04.2012
A team led by an Ames Laboratory scientist develops new technique
for solid-state quantum information processing
Scientists have overcome a major hurdle facing quantum computing: how to protect quantum information from degradation by the environment while simultaneously performing computation in a solid-state quantum system. The research was reported in the April 5 issue of Nature.

A group led by U.S. Department of Energy’s Ames Laboratory physicist Viatsheslav Dobrovitski and including scientists at Delft University of Technology; the University of California, Santa Barbara; and University of Southern California, made this big step forward on the path to using the motions of single electrons and nuclei for quantum information processing. The discovery opens the door to robust quantum computation with solid-state devices and using quantum technologies for magnetic measurements with single-atom precision at nanoscale.

Quantum information processing relies on the combined motion of microscopic elements, such as electrons, nuclei, photons, ions, or tiny oscillating joists. In classical information processing, information is stored and processed in bits, and the data included in each bit is limited to two values (0 or 1), which can be thought of as a light switch being either up or down. But, in a quantum bit, called a qubit, data can be represented by how these qubits orient and move in relationship with each other, introducing the possibility for data expression in many tilts and movements.

This power of quantum information processing also poses a major challenge: even a minor “bump” off course causes qubits to lose data. And qubits tend to interact quite sensitively with their environment, where multiple forces bump them off track.

But, because the key to quantum information processing is in the relationship between qubits, the solution is not as easy as isolating a single qubit from its environment.

“The big step forward here is that we were able to decouple individual qubits from the environment, so they retain their information, while preserving the coupling between the qubits themselves” said Dobrovitski.

Solid-state hybrid systems are useful for quantum information processing because they are made up of different types of qubits that each perform different functions, much like different parts of a car combine to move it down the road. In the case of Dobrovitski’s work, the hybrid system includes magnetic moments of an electron and a nucleus.

“This type of hybrid system may be particularly good for quantum information processing because electrons move fast, can be manipulated easily, but they also lose quantum information quickly. Nuclei move very slow, are difficult to manipulate, but they also retain information well,” said Dobrovitski. “You can see an analogy between this hybrid quantum system and the parts of a classical computer: the processor works fast but doesn’t keep information long, while the memory works slowly but stores information for a long time.”

Usually, when you decouple qubits from their environment to protect their quantum data, you decouple them from everything, even from each other.

Breehan Gerleman Lucchesi | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>