Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening the gate to robust quantum computing

10.04.2012
A team led by an Ames Laboratory scientist develops new technique
for solid-state quantum information processing
Scientists have overcome a major hurdle facing quantum computing: how to protect quantum information from degradation by the environment while simultaneously performing computation in a solid-state quantum system. The research was reported in the April 5 issue of Nature.

A group led by U.S. Department of Energy’s Ames Laboratory physicist Viatsheslav Dobrovitski and including scientists at Delft University of Technology; the University of California, Santa Barbara; and University of Southern California, made this big step forward on the path to using the motions of single electrons and nuclei for quantum information processing. The discovery opens the door to robust quantum computation with solid-state devices and using quantum technologies for magnetic measurements with single-atom precision at nanoscale.

Quantum information processing relies on the combined motion of microscopic elements, such as electrons, nuclei, photons, ions, or tiny oscillating joists. In classical information processing, information is stored and processed in bits, and the data included in each bit is limited to two values (0 or 1), which can be thought of as a light switch being either up or down. But, in a quantum bit, called a qubit, data can be represented by how these qubits orient and move in relationship with each other, introducing the possibility for data expression in many tilts and movements.

This power of quantum information processing also poses a major challenge: even a minor “bump” off course causes qubits to lose data. And qubits tend to interact quite sensitively with their environment, where multiple forces bump them off track.

But, because the key to quantum information processing is in the relationship between qubits, the solution is not as easy as isolating a single qubit from its environment.

“The big step forward here is that we were able to decouple individual qubits from the environment, so they retain their information, while preserving the coupling between the qubits themselves” said Dobrovitski.

Solid-state hybrid systems are useful for quantum information processing because they are made up of different types of qubits that each perform different functions, much like different parts of a car combine to move it down the road. In the case of Dobrovitski’s work, the hybrid system includes magnetic moments of an electron and a nucleus.

“This type of hybrid system may be particularly good for quantum information processing because electrons move fast, can be manipulated easily, but they also lose quantum information quickly. Nuclei move very slow, are difficult to manipulate, but they also retain information well,” said Dobrovitski. “You can see an analogy between this hybrid quantum system and the parts of a classical computer: the processor works fast but doesn’t keep information long, while the memory works slowly but stores information for a long time.”

Usually, when you decouple qubits from their environment to protect their quantum data, you decouple them from everything, even from each other.

Breehan Gerleman Lucchesi | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>