Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One Kind of Supersymmetry Shown to Emerge Naturally

10.04.2014

A UCSB physicist outlines how this unique phenomenon occurs in a condensed matter system

UC Santa Barbara physicist Tarun Grover has provided definitive mathematical evidence for supersymmetry in a condensed matter system. Sought after in the realm of subatomic particles by physicists for several decades, supersymmetry describes a unique relationship between particles. 


Supersymmetry in a three-dimensional topological superconductor: Ising magnetic fluctuations (denoted by red arrows) at the boundary couple to the fermions (blue cone).

“As yet, no one has found supersymmetry in our universe, including at the Large Hadron Collider (LHC),” said the associate specialist at UCSB’s Kavli Institute for Theoretical Physics (KITP). He is referring to the underground laboratory in Switzerland where the famous Higgs boson was identified in 2012. 

“This is a fresh insight as to how supersymmetry arises in nature.” The findings of Grover’s research, conducted with colleagues Donna Sheng and Ashvin Vishwanath, appear in the current online edition of the journal Science. 

The fundamental constituents of matter — electrons, quarks and their relatives — are fermions. The particles associated with fundamental forces are called bosons. Several decades ago, physicists hypothesized that every type of particle in the Standard Model of particle physics, a theory that captures the dynamics of known subatomic particles, has one or more superpartners — other types of particles that share many of the same properties but differ in a crucial way. 

If a particle is a fermion, its superpartner is a boson, and if a particle is a boson, its superpartner is a fermion. This is supersymmetry, a postulated unique theoretical symmetry of space. 

While the Standard Model governing the ordinary world is not supersymmetric, it is often theorized that the more “fundamental” theory relevant to very hot systems, such as those probed in high-energy particle accelerators like the LHC (or higher energy ones yet to be built), might exhibit supersymmetry. This has yet to be proved or disproved by accelerator experiments. 

However, through their calculations, Grover and his co-authors show that supersymmetry emerges naturally in a topological superconductor. An example is helium-3, a light, nonradioactive isotope of helium with two protons and one neutron (common helium has two neutrons). When helium-3 is cooled to almost absolute zero (0 Kelvin), it becomes a liquid superconductor. As understood only recently, the boundary of its container features fermions. 

“The reason these fermions exist is related to time-reversal symmetry, which is unrelated to supersymmetry,” said Grover. A video of an object tossed vertically up in the air is a good example of time-reversal symmetry. When the video is played back, it shows the object following the same parabolic trajectory through the air as it did when the video was played normally. “We wanted to see what would happen to these fermions when time-reversal symmetry was broken,” Grover explained. 

The scientists theorized that the application of a specified amount of magnetic field to the surface of the container would break the time-reversal symmetry. This, in turn, would cause the fermions to disappear due to their interaction with bosons that already exist in the liquid helium-3. Grover and his coauthors found that right at the point when fermions are about to disappear, the fermions and the bosons behave as superpartners of each other, thus providing a condensed matter analog of supersymmetry. 

According to physicists, if supersymmetry can be proved in high-energy experiments, it opens the door to answers that physicists have been seeking for years and may pave the way to analyze and even integrate different fundamental physics theories such as quantum field theory, string theory and Einstein’s relativity. 

“Grover’s team shows that supersymmetry may be studied in low-energy experiments,” said physics professor Leon Balents, Grover’s colleague at KITP. “This would be amazing in its own right and could serve as an inexpensive tabletop model for what to look for at particle accelerators.” 

“Our paper provides insight into how and in what systems supersymmetry may emerge in a very natural way,” Grover said. “Maybe it doesn’t exist in our actual universe, but there exist these condensed matter systems, such as topological superconductors, where supersymmetry can exist. This opens the window for experimentalists to go and test supersymmetry and its exciting consequences in real life.” 

Contact Info: 

Julie Cohen
julie.cohen@ucsb.edu
(805) 893-7220

Julie Cohen | EurekAlert!
Further information:
http://www.news.ucsb.edu/2014/014069/one-kind-supersymmetry-shown-emerge-naturally#

Further reports about: Collider Hadron Institute LHC Model Physics Standard Switzerland experiments mathematical matter underground

More articles from Physics and Astronomy:

nachricht Scientists take nanoparticle snapshots
11.02.2016 | DOE/Argonne National Laboratory

nachricht New paths for generation of ultracold molecules
11.02.2016 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Scientists take nanoparticle snapshots

11.02.2016 | Physics and Astronomy

NASA sees development of Tropical Storm 11P in Southwestern Pacific

11.02.2016 | Earth Sciences

Scientists from MIPT gain insights into 'forbidden' chemistry

11.02.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>