Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the generation of solar spicules and Alfvenic waves

16.10.2017

Combining computer observations and simulations, a new model shows that the presence of neutrals in the gas facilitates the magnetic fields to penetrate through the surface of the Sun producing the spicules.

At any given moment, as many as 10 million wild snakes of solar material leap from the sun's surface. These are spicules, and despite their abundance, scientists didn't understand how these jets of plasma form nor did they influence the heating of the outer layers of the sun's atmosphere or the solar wind. Now, for the first time, in a study partly funded by NASA, scientists have modeled spicule formation. For the first time, a scientific team has revealed their nature by combining simulations and images taken with the NASA's IRIS spectrograph and the Swedish Solar Telescope of the Roque de los Muchachos Observatory (Garafía, La Palma). The study, led by Dr. Juan Martinez-Sykora, researcher at Lockheed Martin's Solar and Astrophysics Laboratory (California, USA) and astrophysicist at the University of La Laguna (ULL), is published today in the journal Science.


In the image above obtained with the NASA's spectrograph IRIS, can be seen in the bedge or limbo of the Sun the multitude of jets leaping the surface. In the center image, the numerical model is able to reproduce the jets. In the image below, taken with the Swedish Solar Telescope of the Roque de los Muchachos Observatory (La Palma), the jets are observed in the solar disk as filamentous structures of short duration and reflected in the spectrum shifted to blue because they are getting close to the Earth.

Credit: Swedish Solar Telescope of the Roque de los Muchachos Observatory (La Palma)

The observations were made with IRIS (NASA's Interface Region Imaging Spectrograph), a 20 cm ultraviolet space telescope with a spectrograph able to observe details of about 240 km, and the Swedish Solar Telescope, located at the Roque de los Muchachos Observatory. This spacecraft and the ground-based telescope study the lower layers of the solar atmosphere, where the spicules form: chromosphere and the region of transition

In addition to the images, they used computer simulations whose code was developed for almost a decade. "In our research," says Prof. Bart De Pontieu, also author of the study, "both go hand in hand. "We compare observations and models to figure out how well our models are performing, as well as how we should interpret our space-based observations."

Their model is based in the dynamics of plasma -- the hot gas of charged particles that streams along magnetic fields and constitutes the sun. Earlier versions of the model treated the interface region as a uniform, or completely charged, plasma, but the scientists knew something was missing because they never saw spicules in the simulations.

The model they generated is based on plasma dynamics, a very hot partially ionized gas flowing along the magnetic fields. Previous versions considered the lower atmosphere to be a uniform or fully charged plasma, but they suspected something was missing since they never detected spikes in the simulations.

The key, the scientists realized, was neutral particles. They were inspired by Earth's own ionosphere, a region of the upper atmosphere where interactions between neutral and charged particles are responsible for numerous dynamic processes. In cooler regions of the sun, such as the interface region, plasma isn't actually uniform. Some particles are still neutral, and neutral particles aren't subject to magnetic fields like charged particles are. Scientists based previous models on a uniform plasma in order to simplify the problem -- modeling is computationally expensive, and the final model took roughly a year to run with NASA's supercomputing resources -- but they realized neutral particles are a necessary piece of the puzzle.

"Usually magnetic fields are tightly coupled to charged particles," said Juan Martínez-Sykora, lead author of the study and a solar physicist at Lockheed Martin. "With only charged particles in the model, the magnetic fields were stuck, and couldn't rise to the surface. When we added neutrals, the magnetic fields could move more freely."

Neutral particles facilitate the buoyancy the marled knots of magnetic energy need to rise through the boiling plasma and reach the surface. There, they snap producing spicules, releasing both plasma and energy. The simulations closely matched the observations; spicules occurred naturally and frequently.

"This result is a clear example of the breakthrough that can be achieved by combining powerful theoretical-numerical methods, state-of-the-art observations and supercomputing tools to better understand astrophysical phenomena", explains Prof.Fernando Moreno-Insertis, solar physicist at IAC, Professor ar the ULL and supervisor of the work Diploma of Advanced Studies (DEA) of Juan Martínez-Sykora. "The great complexity of many of the phenomena that occur in the solar atmosphere forces us to consider at the same time the dynamics of partially ionized gas, the magnetic field and the radiation-matter interaction in order to be able to explain them satisfactorily".

"This result is a clear example of the breakthroughs that can be achieved by combining powerful theoretical-numerical methods, state-of-the-art observations and supercomputing tools to better understand astrophysical phenomena", explains Fernando Moreno-Insertis, solar physicist at IAC, Professor at the ULL and supervisor of the DEA thesis (equivalent to a master´s thesis) of Juan Martínez-Sykora. "The great complexity of many of the phenomena that occur in the solar atmosphere forces us to consider at the same time the dynamics of partially ionized gas, the magnetic field and the radiation-matter interaction in order to be able to explain them satisfactorily".

The scientists' updated model revealed something about solar energy transport as well. It turns out the energy in this whip-like process is high enough to generate Alfvén waves, a strong kind of wave scientists suspect is key to heating the sun's atmosphere and propelling the solar wind, which constantly bathes the solar system with charged particles from the sun.

The National Academy of Sciences awarded Prof. Mats Carlsson and Prof. Viggo H. Hansteen, both developers of the model and authors of the study, with the 2017 Arctowski Medal in recognition of their contributions to the study of solar physics and the sun-Earth connection. Juan Martínez-Sykora included the effects produced by the presence of the neutral particles.

###

Article: "On the generation of solar spicules and Alfvenic waves", by J. Martínez-Sykora et al. DOI: 10.1126/science.aah5412

http://science.sciencemag.org/content/356/6344/1269/tab-pdf

Contact:

Juan Martínez-Sykora: juanms@lmsal.com

Media Contact

Alejandra Rueda Moral
arueda@iac.es

http://www.iac.es/?lang=en 

Alejandra Rueda Moral | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>