Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observing the Unobservable: Researchers Measure Electron Orbitals of Molecules in 3D

05.10.2015

Many of you will remember them from your physics lessons at school: often represented as colourful clouds or balloons, electron orbitals provide information on the whereabouts of the electrons in atoms and molecules. Scientists from the University of Graz, Forschungszentrum Jülich, and the Physikalisch-Technische Bundesanstalt have now succeeded in experimentally recording these structures in all three dimensions. They achieved this by further developing a method they had already applied two years ago to make these orbitals visible in two dimensions. Their findings have now been published in the scientific journal Nature Communications.

In quantum physics, electrons behave both as particles and as waves. The wave nature can be described by the spatial wave function, the orbital. “Orbitals contain information on the spatial distribution of the electrons at a certain energy. If they are known, all the relevant properties of a material can be derived,” explains Prof. Peter Puschnig from the University of Graz.


Photonen schießen Elektronen aus einer Schicht von Molekülen auf einer Silberoberfläche, was die Rekonstruktion von Molekühlorbitalen ermöglich. Foto: Lüftner/Institut für Physik der Uni Graz

However, the laws of quantum mechanics prevent the direct observation of how an electron propagates as a wave. Two years ago, however, scientists from Graz and Jülich for the first time recorded orbitals of larger complex molecules. For their measurements, they used photoelectron spectroscopy, based on the photoelectric effect.

In this procedure, a molecular layer on a silver surface is bombarded with photons (particles of light), causing the energetically excited electrons to be released. “The electrons do not simply fly around in space. Instead, their angular and energy distributions enable us to draw conclusions about the molecular orbitals,” says Puschnig.

By further refining this method, the scientists have now succeeded in reconstructing the orbitals in all three dimensions. This meant that the experiment had to be performed with various photon energies, i.e. different wavelengths of light, in the ultraviolet range. “Additional information on the third dimension can be obtained with variable wavelengths in much the same way as a camera takes repeated pictures of one object with a variable focus,” explains Prof. Stefan Tautz from Forschungszentrum Jülich.

However, it took a long time before it was possible to combine the data gathered in different measurement series into one spatial model. “Until now, we were unable to compare the measured intensities originating from different photon energies,” says Prof. Michael Ramsey from the Department of Physics at the University of Graz. In order to obtain comparable values, the Jülich researchers installed their detector at the Metrology Light Source (MLS) of the Physikalisch-Technische Bundesanstalt (PTB) in Berlin.

“Our synchrotron radiation source is one of the few worldwide that provides a precisely calibrated photon flux,” explains Dr. Alexander Gottwald from PTB. On the basis of the data from the calibrated measurements, the scientists at Graz were then able to reconstruct the electron distributions in three dimensions within the context of the research core are “Models and Simulation”.

The research team from Jülich, Graz, and Berlin was thus able observe the wave function, which according to the rules of quantum mechanics is in fact considered unobservable. The results are long-sought proof of the orbital concept as such. The result is also relevant for physics: “Our experiment provides important new physical insights into the underlying photoelectric effect,” says Stefan Tautz. Somewhat surprisingly, the electrons that are released can be described in a manner very similar to free electrons – an idea that was rejected almost 50 years ago on the basis of the assumed scattering by the atomic cores.

Original publication:
S. Weiß, D. Lüftner, T. Ules, E. M. Reinisch, H. Kaser, A. Gottwald, M. Richter, S. Soubatch, G. Koller, M. G. Ramsey, F. S. Tautz, and P. Puschnig, Exploring three-dimensional orbital imaging with energy dependent photoemission tomography, Nature Communications (2015)

Picture material on request.

Contact:
Assoz.-Prof. Dr. Peter Puschnig
Institute of Physics, University of Graz
Tel.: +43 316 380-5230
E-Mail: peter.puschnig@uni-graz.at

Mag. Gudrun Pichler | Karl-Franzens-Universität Graz
Further information:
http://www.uni-graz.at

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>