Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Observing the birth of a spectral line


Ultrashort intense laser pulses cut into a fundamental quantum phenomenon

For the first time, physicists managed to observe in real time how an atomic spectral line emerges within the incredibly short time span of a few femtoseconds, verifying a theoretical prediction. This has been possible by applying a very fast temporal switch:

Absorption in a helium as it depends on the photon energy of the exciting extreme-ultraviolet flash of light and the time delay to the ionizing near-infrared laser pulse acting as a cut-off gate.

graphics: MPIK

An intense laser pulse cuts off the natural decay shortly after excitation by a preceding laser pulse. The build-up of the asymmetric Fano line shape of two quantum-mechanically interfering electrons in the Helium atom is measured by varying the time delay between the two laser pulses.

In a classical picture, the electrons in an atom are allowed to revolve only on certain orbits around its nucleus – or in terms of quantum mechanics occupy certain orbitals or energy levels. Light may lift (excite) an electron into a higher orbit, if its energy (color) matches the energy difference of the orbitals.

That is why the atom only absorbs light of certain colors, called its absorption spectrum. In most cases, the single spectral lines are symmetrically shaped, but under some conditions asymmetric line shapes appear, which are termed Fano profiles.

The decay of doubly excited helium stands for such a case: One of the two excited electrons falls back to the lowest-energy (ground) state after a collision with the other electron, thereby kicking the latter out of the atom. As the free electron is no longer limited to discrete energy levels, physicists are speaking about the coupling of a discrete state to a continuum, a general phenomenon at work in many different processes in nature, and fundamentally at the interface of quantum (discrete energies) and classical (continuous energies) mechanics.

Theoretical calculations predicted that the corresponding Fano profile does not emerge instantaneously but takes some time to develop: In helium, the unfolding of the line shape takes a few femtoseconds – some millionths of a billionth of a second.

Recently, experimental physicists from the MPI for Nuclear Physics (MPIK, Heidelberg), together with theoretical physicists at the Vienna University of Technology and the Kansas State University succeeded to take a movie of an emerging Fano spectral line. To gain access to the short time scales, they used two ultrashort laser-controlled flashes of light. The first one in the extreme ultraviolet excites both electrons of the helium atom. Some femtoseconds later, the second, intense, near-infrared laser flash triggers ionization ahead of time, i.e., it cuts off the natural autoionization decay process.

Alexander Blättermann, postdoc in the group of Thomas Pfeifer at the MPIK, explains: “You may think of the excited helium atom as an oscillating dipole that produces the optical absorption line. The subsequent strong infrared pulse acts as a temporal switch stopping this oscillation before the line has fully built up.” By varying the time delay between the two laser pulses – this has been done with a precision of less than a femtosecond – the researchers tracked the evolution of the line shape in real time.

“The experimental results nicely show how the Fano profile builds up with increasing time delay”, says Andreas Kaldun who has recently moved from the MPIK to SLAC in Stanford. At very short time delays, the spectral line is completely smeared out to a broad and flat band. With increasing time delay, the dipole is granted more and more time to oscillate, thus the line narrows and steepens step by step and finally approaches the original Fano profile, in very good agreement with the theory prediction.

“Our results thus not only verify the prediction, but at the same time demonstrate the power of the applied time-gating method for the exploration of the origin and evolution of many different fundamental quantum processes that could thus far only be studied by interpreting their static absorption spectra”, concludes Thomas Pfeifer.

The study of such atomic processes by different experimental methods has always fueled the evolution of physics (e.g. the discovery of quantum mechanics in the past) and remains an active topic of international contemporary research. In the same issue of Science magazine, a completely independent team of scientists from France and Spain have used the complementary method of time-resolved photoelectron spectroscopy to obtain a view on the Fano resonance "from the outside" of the atom.

This was achieved by reconstructing the time-dependent outgoing quantum-mechanical electron wavepacket (DOI: 10.1126/science.aah5188). Together with the time-resolved view "from the inside" by the time-gated dipole approach as described above (DOI: 10.1126/science.aah6972), atomic physics continues to transform our perception of the building blocks of nature. On the long run, this understanding eventually leads to technological discoveries. Physics revolutions of the past brought the laser and x-ray sources, the future could bring laser-controlled chemistry and molecule-sized ultrafast computers and devices.

Original publication:
Observing the ultrafast build-up of a Fano resonance in the time domain, A. Kaldun, A. Blättermann, V. Stooß, S. Donsa, H. Wei, R. Pazourek, S. Nagele, C. Ott, C. D. Lin, J. Burgdörfer, T. Pfeifer, Science, 11 November 2016, DOI: 10.1126/science.aah6972

Prof. Dr. Thomas Pfeifer, MPI für Kernphysik
phone: +496221 516380

Prof. Dr. Joachim Burgdörfer, Technische Universität Wien
phone:+ 43 1 58801 136 10

Prof. Dr. Chii-Dong Lin, Kansas State University
phone: +1-785-532-1617

Weitere Informationen: Division Pfeifer at MPIK

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Further reports about: Electrons Kernphysik MPIK energy levels femtoseconds laser pulses physics quantum mechanics

More articles from Physics and Astronomy:

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

nachricht New research could literally squeeze more power out of solar cells
20.04.2018 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>