Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Observing Quantum Particles in Perfect Order

Scientists at the Max Planck Institute of Quantum Optics succeed in recording single-atom resolved images of a highly correlated quantum gas.

Ultracold atoms in optical lattices have evolved in the last years into an interdisciplinary tool for many-body solid state and quantum physics. But so far only limited possibilities were available to manipulate and to image the quantum gas on a microscopic scale.

In a BEC the atom number density shows large fluctuations from lattice site to lattice site (left). In the Mott insulator state (middle) the atom number is almost perfectly constant. For higher particle numbers the characteristic shell structure evolves (right). MPQ, Quantum Many-Body Division

For the first time a team around Stefan Kuhr and Immanuel Bloch at MPQ has now succeeded in observing – atom by atom, lattice site by lattice site – such a strongly correlated system (Nature, 18 August 2010, DOI 10.1038/nature09378). The physicists saw that under certain conditions the atoms in the optical lattice arrange in a very regular distribution, with a fixed number of atom per lattice site. This is an important precondition for using these systems as quantum registers with individually addressable quantum bits in future quantum computers.

In their experiment, the physicists deal with a cloud of thousands “bosonic” rubidium atoms. Bosons behave very socially as they aim for the same quantum state at very low temperatures, forming a Bose-Einstein condensate. These ultracold atoms are almost at rest which makes them very sensitive to external light fields. This effect is used to place the atoms in a regular lattice structure. The scientists superimpose crosswise standing laser light waves from different directions, thus creating an optical lattice, a periodic crystal made of dark and bright areas. The resulting light field resembles an egg carton: the dips, which correspond to the bright areas, are energetically favoured. These are the sites where the rubidium atoms like to settle down.

Depending on the lattice height, i.e. the light intensity, correlations between the particles may lead to completely different properties of the whole system. For low intensities the particles are allowed to “tunnel” to their neighbouring sites. The ensemble then represents a superfluid. If, on the other hand, the interactions between the particles dominate at larger lattice depth, the particles are fixed to the lattice sites, and the system evolves into a so-called Mott-insulator (named after the British physicist and Nobel prize winner Sir Neville F. Mott).

According to model calculations, in a BEC the number of atoms varies from lattice site to lattice site, whereas it should approach (for very low temperatures) a constant value in the Mott-insulator case. Now the scientists have been able to directly observe this behaviour experimentally. “We succeeded in imaging single atoms on their individual lattice sites This is a really sensational result”, Dr. Stefan Kuhr, the leader of the project, explains enthusiastically. “As is commonly done we cool the atoms using laser beams. At the same time however we use the fluorescence photons emitted in this process for observing the atoms with a specially developed microscope. This way it was possible to count the atoms on each lattice site. Recording snap shots of atom distributions in the quantum liquid, we were able to detect even single defects and monitor their proliferation when the temperature of the gas was increased.”

Varying particle number and temperature of the quantum gas, the physicists counted the number of atoms per lattice site in a series of systematic measurements. As expected for the BEC the atom density exhibited large number fluctuations. On the other hand, for the Mott insulator an almost perfect structure with a very low defect density was obtained (see images).

The MPQ team even resolved the shell structure which is characteristic of a Mott insulator for large particle numbers (see figure). This structure is caused by the fact that the optical lattice is not flat, but its outer wings point upwards, following the Gaussian profile of the laser intensity. Lattice sites on the outer edge are therefore energetically disfavoured and not occupied before the inner ones have all been taken. From the outside to the inner core the atom number per site increases in a stepwise manner. Pairs of atoms however get immediately lost due to inelastic collisions induced by the irradiated laser beams. Therefore the shell structure appears as alternating bright and dark rings.

A Mott insulator with exactly one atom per lattice site represents a very promising candidate for a quantum register of up to a few hundred atomic quantum bits. “Yet it has to be shown that we are really able to manipulate each individual atom”, Dr. Kuhr explains. “This is a crucial requirement for encoding and reading out quantum bits. We are now at the beginning of setting up the first experiments of that kind.”

Ultracold quantum gases are not only suited for applications in future quantum computers but can also serve as models for condensed matter physics. Here the atoms in the optical lattice play the role of the electrons in the solid state crystal. Investigations along these lines may lead to a deeper understanding of unusual magnetic and electric phenomena, e.g. high-Tc-superconductivity , and may pave the way towards “tailor-made” materials. Olivia Meyer-Streng

Original publication:
Jacob F. Sherson, Christof Weitenberg, Manuel Endres, Marc Cheneau, Immanuel Bloch and Stefan Kuhr
Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator
Nature, 18 August 2010, DOI 10.1038/nature09378
Dr. Stefan Kuhr Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 89 32905 738
Prof. Dr. Immanuel Bloch
Chair of Experimental Physics
LMU Munich, Schellingstr. 4
80799 München, Germany, and
Max Planck Institute of Quantum Optics
Phone: +49 89 32905 138

Dr. Olivia Meyer-Streng | idw
Further information:

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

More VideoLinks >>>