Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observation of Second Sound in a Quantum Gas

16.05.2013
Second sound is a quantum mechanical phenomenon, which has been observed only in superfluid helium.

Physicists from the University of Innsbruck, Austria, in collaboration with colleagues from the University of Trento, Italy, have now proven the propagation of such a temperature wave in a quantum gas. The scientists have published their historic findings in the journal Nature.


The cigar-shaped particle cloud is locally heated with a power-modulated laser beam (green).
IQOQI/Ritsch

Below a critical temperature, certain fluids become superfluid and lose internal friction. In addition, fluids in this state conduct heat extremely efficiently, with energy transport occurring in a distinct temperature wave. Because of the similarities to a sound wave, this temperature wave is also called second sound. To explain the nature of superfluids, the famous physicist Lev Landau developed the theory of two-fluid hydrodynamics in Moscow in 1941.

He assumed that fluids at these low temperatures comprise a superfluid and a normal component, whereby the latter one gradually disappears with decreasing temperature. Until now superfluidity has experimentally been observed only in liquid helium and in ultracold quantum gases. Another example of a superfluid system is a neutron star, and evidence also been found in the atomic nucleus.

Superfluidity is closely connected to the technologically important superconductivity, the phenomenon of zero electrical resistance at very low temperatures.

Observation of temperature waves

Ultracold quantum gases are ideal model systems to experimentally observe quantum mechanical phenomena such as superfluidity. In these experiments hundreds of thousands of atoms are cooled in a vacuum chamber to almost absolute zero (−273.15 °C). By using lasers the particles in this state can be controlled and manipulated efficiently and with high accuracy. “Despite intensive research in this field for over ten years now, the phenomenon of second sound has proven elusive for detection in quantum gases,” says Rudolf Grimm from the Institute of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information at the Austrian Academy of Sciences. “However, in the end it was amazingly easy to prove.”
In the laboratory, Grimm’s team of quantum physicists prepared a quantum gas consisting of about 300,000 lithium atoms. They heated the cigar-shaped particle cloud locally with a power-modulated laser beam and then observed the propagating temperature wave. “While in superfluid helium only one entropy wave is generated, our Fermi gas also exhibited some thermal expansion and, thus, a measurable density wave,” explains Grimm the crucial difference. It was also the first time that the Innsbruck physicists were able to measure the superfluid fraction in the quantum gas. “Before us nobody had been able to achieve this, which closes a fundamental gap in the research of Fermi gases,” says Rudolf Grimm.

Confirming a theory after 50 years

The research work, published now in the journal Nature, is the result of a long-term close collaboration between the physicists in Innsbruck and the Italian scientists. The theoretical physicists from the Trento Bose-Einstein Condensation Center led by Sandro Stringari and Lev Pitaevskii adapted Lev Landau‘s theory of the description of second sound for the almost one-dimensional geometry of the Innsbruck experiments. Actually Lev Pitaevskii was one of Lev Landau‘s pupils. “With this model it became easy to interpret the results of our measurement,” says Rudolf Grimm. “Moreover, our colleagues from Trento intensely supported our experiment conceptually. The results represent the pinnacle of the collaboration with our partner university in Trento and it is a vital indication for research cooperation within the European Region the Tyrol-South Tyrol-Trentino.” In June the University of Innsbruck will award an Honorary Doctorate to Lev Pitaevskii for his close collaboration with the local scientists.

The scientists are supported by the Austrian Science Fund (FWF) and the European Research Council (ERC).

Publication: Second sound and the superfluid fraction in a Fermi gas with resonant interactions. Leonid A. Sidorenkov, Meng Khoon Tey, Rudolf Grimm, Yan-Hua Hou, Lev Pitaevskii, Sandro Stringari. Advance Online Publication, Nature on May 15, 2013 DOI: 10.1038/nature12136
Contact
Univ.-Prof. Dr. Rudolf Grimm
Institute of Experimental Physics
University of Innsbruck
phone: +43 512 507-6300
email: rudolf.grimm@uibk.ac.at
web: http://www.ultracold.at
Dr. Christian Flatz
Public Relations
University of Innsbruck
phone: +43 512 507 32022
mobile: +43 676 872532022
email: christian.flatz@uibk.ac.at
Weitere Informationen:
http://dx.doi.org/10.1038/nature12136
- Second sound and the superfluid fraction in a Fermi gas with resonant interactions. Leonid A. Sidorenkov, Meng Khoon Tey, Rudolf Grimm, Yan-Hua Hou, Lev Pitaevskii, Sandro Stringari. Advance Online Publication, Nature on May 15

http://www.ultracold.at - Research group of Rudolf Grimm

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at
http://www.ultracold.at

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>