Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observation of Second Sound in a Quantum Gas

16.05.2013
Second sound is a quantum mechanical phenomenon, which has been observed only in superfluid helium.

Physicists from the University of Innsbruck, Austria, in collaboration with colleagues from the University of Trento, Italy, have now proven the propagation of such a temperature wave in a quantum gas. The scientists have published their historic findings in the journal Nature.


The cigar-shaped particle cloud is locally heated with a power-modulated laser beam (green).
IQOQI/Ritsch

Below a critical temperature, certain fluids become superfluid and lose internal friction. In addition, fluids in this state conduct heat extremely efficiently, with energy transport occurring in a distinct temperature wave. Because of the similarities to a sound wave, this temperature wave is also called second sound. To explain the nature of superfluids, the famous physicist Lev Landau developed the theory of two-fluid hydrodynamics in Moscow in 1941.

He assumed that fluids at these low temperatures comprise a superfluid and a normal component, whereby the latter one gradually disappears with decreasing temperature. Until now superfluidity has experimentally been observed only in liquid helium and in ultracold quantum gases. Another example of a superfluid system is a neutron star, and evidence also been found in the atomic nucleus.

Superfluidity is closely connected to the technologically important superconductivity, the phenomenon of zero electrical resistance at very low temperatures.

Observation of temperature waves

Ultracold quantum gases are ideal model systems to experimentally observe quantum mechanical phenomena such as superfluidity. In these experiments hundreds of thousands of atoms are cooled in a vacuum chamber to almost absolute zero (−273.15 °C). By using lasers the particles in this state can be controlled and manipulated efficiently and with high accuracy. “Despite intensive research in this field for over ten years now, the phenomenon of second sound has proven elusive for detection in quantum gases,” says Rudolf Grimm from the Institute of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information at the Austrian Academy of Sciences. “However, in the end it was amazingly easy to prove.”
In the laboratory, Grimm’s team of quantum physicists prepared a quantum gas consisting of about 300,000 lithium atoms. They heated the cigar-shaped particle cloud locally with a power-modulated laser beam and then observed the propagating temperature wave. “While in superfluid helium only one entropy wave is generated, our Fermi gas also exhibited some thermal expansion and, thus, a measurable density wave,” explains Grimm the crucial difference. It was also the first time that the Innsbruck physicists were able to measure the superfluid fraction in the quantum gas. “Before us nobody had been able to achieve this, which closes a fundamental gap in the research of Fermi gases,” says Rudolf Grimm.

Confirming a theory after 50 years

The research work, published now in the journal Nature, is the result of a long-term close collaboration between the physicists in Innsbruck and the Italian scientists. The theoretical physicists from the Trento Bose-Einstein Condensation Center led by Sandro Stringari and Lev Pitaevskii adapted Lev Landau‘s theory of the description of second sound for the almost one-dimensional geometry of the Innsbruck experiments. Actually Lev Pitaevskii was one of Lev Landau‘s pupils. “With this model it became easy to interpret the results of our measurement,” says Rudolf Grimm. “Moreover, our colleagues from Trento intensely supported our experiment conceptually. The results represent the pinnacle of the collaboration with our partner university in Trento and it is a vital indication for research cooperation within the European Region the Tyrol-South Tyrol-Trentino.” In June the University of Innsbruck will award an Honorary Doctorate to Lev Pitaevskii for his close collaboration with the local scientists.

The scientists are supported by the Austrian Science Fund (FWF) and the European Research Council (ERC).

Publication: Second sound and the superfluid fraction in a Fermi gas with resonant interactions. Leonid A. Sidorenkov, Meng Khoon Tey, Rudolf Grimm, Yan-Hua Hou, Lev Pitaevskii, Sandro Stringari. Advance Online Publication, Nature on May 15, 2013 DOI: 10.1038/nature12136
Contact
Univ.-Prof. Dr. Rudolf Grimm
Institute of Experimental Physics
University of Innsbruck
phone: +43 512 507-6300
email: rudolf.grimm@uibk.ac.at
web: http://www.ultracold.at
Dr. Christian Flatz
Public Relations
University of Innsbruck
phone: +43 512 507 32022
mobile: +43 676 872532022
email: christian.flatz@uibk.ac.at
Weitere Informationen:
http://dx.doi.org/10.1038/nature12136
- Second sound and the superfluid fraction in a Fermi gas with resonant interactions. Leonid A. Sidorenkov, Meng Khoon Tey, Rudolf Grimm, Yan-Hua Hou, Lev Pitaevskii, Sandro Stringari. Advance Online Publication, Nature on May 15

http://www.ultracold.at - Research group of Rudolf Grimm

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at
http://www.ultracold.at

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>