Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU-Poly Researchers Set Record for Detecting Smallest Virus, Opening New Possibilities for Early Disease Detection

29.08.2012
Researchers at Polytechnic Institute of New York University (NYU-Poly) have created an ultra-sensitive biosensor capable of identifying the smallest single virus particles in solution, an advance that may revolutionize early disease detection in a point-of-care setting and shrink test result wait times from weeks to minutes.
Stephen Arnold, university professor of applied physics and member of the Othmer-Jacobs Department of Chemical and Biomolecular Engineering, and researchers of NYU-Poly's MicroParticle PhotoPhysics Laboratory for BioPhotonics (MP3L) reported their findings in the most recent issue of Applied Physics Letters, published by the American Institute of Physics.

Their technique is a major advance in a series of experiments to devise a diagnostic method sensitive enough to detect and size a single virus particle in a doctor’s office or field clinic, without the need for special assay preparations or conditions. Normally, such assessment requires the virus to be measured in the vacuum environment of an electron microscope, which adds time, complexity and considerable cost.

Instead, the researchers were able to detect the smallest RNA virus particle MS2, with a mass of only 6 attograms, by amplifying the sensitivity of a biosensor. Within it, light from a tunable laser is guided down a fiber optic cable, where its intensity is measured by a detector on the far end. A small glass sphere is brought into contact with the fiber, diverting the light's path and causing it to orbit within the sphere. This change is recorded as a resonant dip in the transmission through the fiber. When a viral particle makes contact with the sphere, it changes the sphere’s properties, resulting in a detectable shift in resonance frequency.

The smaller the particle, the harder it is to record these changes. Viruses such as influenza are fairly large and have been successfully detected with similar sensors in the past. But many viruses such as Polio are far smaller, as are antibody proteins, and these require increased sensitivity.

Arnold and his co-researchers achieved this by attaching gold nano-receptors to the resonant microsphere. These receptors are plasmonic, and thus enhance the electric field nearby, making even small disturbances easier to detect. Each gold “hot spot” is treated with specific molecules to which proteins or viruses are attracted and bind.

Arnold explained that the inspiration for this breakthrough technique came to him during a concert by violinist Itzhak Perlman: “I was watching Perlman play, and suddenly I wondered what would happen if a particle of dust landed on one of the strings. The frequency would change slightly, but the shift would be imperceptible. Then I wondered what if something sticky was on the string that would only respond to certain kinds of dust?”

In experiments, the researchers successfully detected the smallest RNA virus in solution, and they are now training their sights on detecting single proteins, which would represent a major step toward early disease detection.

“When the body encounters a foreign agent, it responds by producing massive quantities of antibody proteins, which outnumber the virus. If we can identify and detect these single proteins, we can diagnose the presence of a virus far earlier, speeding treatment,” Arnold said. “This also opens up a new realm of possibilities in proteomics,” he said, referring to the study of proteins. “All cancers generate markers, and if we have a test that can detect a single marker at the protein level, it doesn’t get more sensitive than that.”

This patent-pending technology, co authored with postdoctoral fellow Siyka Shopova and graduate student Raaj Rajmangal, is ultimately designed for a point-of-care device capable of detecting viruses or disease markers in blood, saliva or urine. Testing for commercial applications is already under way.

The sensor itself, called a Whispering Gallery-Mode Biosensor, is unique to Arnold’s work. Its name derives from the famous Whispering Gallery in the dome of St. Paul’s Cathedral in London. Much the way its unique acoustics allow a whisper to be heard anywhere within the circular gallery, light traveling within the glass sphere of the biosensor orbits many times, ensuring nothing on the surface is missed.

The technique was pioneered by NYU-Poly MP3L post-doctoral researchers, graduate and undergraduate students, along with Stephen Holler, NYU-Poly alum and now an assistant professor of physics at Fordham University. A technology entrepreneur, Holler founded NovaWave Technologies, a chemical sensor company, at one of NYU-Poly’s business incubators. Thermo Fisher Scientific, one of the world’s leading providers of scientific and laboratory equipment, acquired NovaWave in 2010. Other authors of the paper are Venkata Dantham, NYU-Poly postdoctoral fellow; Vasily Kolchenko, now professor at New York City College of Technology’s Department of Biological Sciences; and Zhenmao Wan, currently a graduate student in the Department of Physics at Hunter College of CUNY.

This research was originally supported by provost seed funds from the New York University (NYU) School of Arts and Sciences, in a grant jointly awarded to Arnold and NYU Professor of Physics David Grier. The National Science Foundation provided additional funding.

Kathleen Hamilton | EurekAlert!
Further information:
http://www.poly.edu

Further reports about: Detection Disease MP3L NYU NYU-Poly NovaWave Physic RNA Virus Whispering glass sphere single protein

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>